MA 3972-MA-Book April 11, 2018 16:1
276 STEP 4. Review the Knowledge You Need to Score High
The area under the curve usingnrectangles of equal length is approximately:
∑n
i= 1
(area of rectangle)=
⎧
⎪⎪⎪
⎪⎪⎪
⎪⎪⎨
⎪⎪⎪
⎪⎪⎪
⎪⎪⎩
∑n
i= 1
f(xi− 1 )Δxleft-endpoint rectangles
∑n
i= 1
f(xi)Δxright-endpoint rectangles
∑n
i= 1
f
(
xi+xi− 1
2
)
Δxmidpoint rectangles
whereΔx=
b−a
n
anda=x 0 <x 1 <x 2 <···<xn=b.
If f is increasing on [a,b], then left-endpoint rectangles are inscribed rectangles and
the right-endpoint rectangles are circumscribed rectangles. Iffis decreasing on [a,b], then
left-endpoint rectangles are circumscribed rectangles and the right-endpoint rectangles are
inscribed. Furthermore,
∑n
i= 1
inscribed rectangle≤area under the curve≤
∑n
i= 1
circumscribed rectangle.
Example 1
Find the approximate area under the curve of f(x)=x^2 +1 fromx=0tox=2, using
4 left-endpoint rectangles of equal length. (See Figure 13.2-2.)
I II
III
IV
y
(2, 5)
f(x)
x
0 0.5 1 1. 5 2
Figure 13.2-2
LetΔxibe the length ofith rectangle. The lengthΔxi=
2 − 0
4
=
1
2
;xi− 1 =
1
2
(i−1).
Area under the curve≈
∑^4
i= 1
f(xi− 1 )Δxi=
∑^4
i= 1
((
1
2
(i−1)
) 2
+ 1
)(
1
2
)
.
Enter
∑((
(.5(x−1))^2 + 1
)
∗.5,x,1,4
)
and obtain 3.75.