MA 3972-MA-Book April 11, 2018 16:1282 STEP 4. Review the Knowledge You Need to Score High
Step 3: Evaluate the integrals.
∣∣
∣∣∫ 10(x−1)^3 dx∣∣
∣∣=∣∣
∣
∣∣(x−1)^4
4] 10∣∣
∣
∣∣=∣∣
∣∣−^1
4∣∣
∣∣=^1
4∫ 21(x−1)^3 dx=
(x−1)^4
4] 21=
1
4
Thus, the total area is1
4
+
1
4
=
1
2
.
Another solution is to find the area using a calculator:Enter∫ (
abs(
(x− 1 )∧ 3)
,x,0,2)
and obtain1
2
.
Example 2
Find the area of the region bounded by the graph of f(x)=x^2 −1, the linesx=−2 and
x=2, and thex-axis.Step 1: Sketch the graph off(x). (See Figure 13.3-4.)(+) (+)- 2 – 1 0 1 2
(–)
yxf(x)Figure 13.3-4Step 2: Set up the integrals.Area=∫− 1− 2f(x)dx+∣∣
∣∣∫ 1− 1f(x)dx∣∣
∣∣+∫ 21f(x)dx.