MA 3972-MA-Book April 11, 2018 16:1
286 STEP 4. Review the Knowledge You Need to Score High
Example 1
Find the area of the regions bounded by the graphs off(x)=x^3 andg(x)=x.
(See Figure 13.3-9.)
– (^110)
(–1, 1)
(1, 1)
y
x
g(x)
f(x)
Figure 13.3-9
Step 1: Sketch the graphs off(x) andg(x).
Step 2: Find the points of intersection.
Setf(x)=g(x)
x^3 =x
⇒x(x^2 −1)= 0
⇒x(x−1)(x+1)= 0
⇒x=0, 1, and− 1.
Step 3: Set up the integrals.
Area=
∫ 0
− 1
(f(x)−g(x))dx+
∫ 1
0
(g(x)−f(x))dx
=
∫ 0
− 1
(
x^3 −x
)
dx+
∫ 1
0
(
x−x^3
)
dx
=
[
x^4
4
−
x^2
2
] 0
− 1
+
[
x^2
2
−
x^4
4
] 1
0
= 0 −
(
(− 1 )^4
4
−
(− 1 )^2
2
)
+
(
12
2
−
14
4
)
− 0
=−
(
−
1
4
)
+