MA 3972-MA-Book April 11, 2018 16:1
290 STEP 4. Review the Knowledge You Need to Score High
Example 1
The base of a solid is the region enclosed by the ellipse
x^2
4
+
y^2
25
=1. The cross sections are
perpendicular to thex-axis and are isosceles right triangles whose hypotenuses are on the
ellipse. Find the volume of the solid. (See Figure 13.4-2.)
y
x
- 2
2
0
5
- 5
a
a
y
x^2 y^2
4 + 25 = 1
Figure 13.4-2
Step 1: Find the area of a cross sectionA(x).
Use the Pythagorean Theorem:a^2 +a^2 =(2y)^2
2 a^2 = 4 y^2
a=
√
2 y,a> 0.
A(x)=
1
2
a^2 =
1
2
(√
2 y
) 2
=y^2
Since
x^2
4
+
y^2
25
=1,
y^2
25
= 1 −
x^2
4
ory^2 = 25 −
25 x^2
4
,
A(x)= 25 −
25 x^2
4
.
Step 2: Set up an integral.
V=
∫ 2
− 2
(
25 −
25 x^2
4
)
dx
Step 3: Evaluate the integral.
V=
∫ 2
− 2
(
25 −
25 x^2
4
)
dx = 25 x−
25
12
x^3
] 2
− 2
=
(
25(2)−
25
12
(2)^3
)
−
(
25(−2)−
25
12
(−2)^3
)
=
100
3
−
(
−
100
3
)
=
200
3
The volume of the solid is
200
3
.
Verify your result with a graphing calculator.