5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:1

290 STEP 4. Review the Knowledge You Need to Score High


Example 1
The base of a solid is the region enclosed by the ellipse
x^2
4

+


y^2
25
=1. The cross sections are
perpendicular to thex-axis and are isosceles right triangles whose hypotenuses are on the
ellipse. Find the volume of the solid. (See Figure 13.4-2.)
y

x


  • 2


2

0

5


  • 5


a

a

y

x^2 y^2
4 + 25 = 1

Figure 13.4-2
Step 1: Find the area of a cross sectionA(x).
Use the Pythagorean Theorem:a^2 +a^2 =(2y)^2
2 a^2 = 4 y^2
a=


2 y,a> 0.

A(x)=

1


2


a^2 =

1


2


(√
2 y

) 2
=y^2

Since
x^2
4

+


y^2
25

=1,


y^2
25

= 1 −


x^2
4
ory^2 = 25 −
25 x^2
4

,


A(x)= 25 −
25 x^2
4

.


Step 2: Set up an integral.

V=

∫ 2

− 2

(
25 −
25 x^2
4

)
dx

Step 3: Evaluate the integral.

V=

∫ 2

− 2

(
25 −
25 x^2
4

)
dx = 25 x−

25


12


x^3

] 2

− 2

=

(
25(2)−

25


12


(2)^3


)

(
25(−2)−

25


12


(−2)^3


)

=


100


3



(

100


3


)
=

200


3


The volume of the solid is

200


3


.


Verify your result with a graphing calculator.
Free download pdf