MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 295
Step 2: Determine the radius of a disc from a cross section.
r= f(x)=
√
x− 1
Step 3: Set up an integral.
V=π
∫ 5
1
(f(x))^2 dx=π
∫ 5
1
(√
x− 1
) 2
dx
Step 4: Evaluate the integral.
V=π
∫ 5
1
(√
x− 1
) 2
dx=π[(x− 1 )]^51 =π
[
x^2
2
−x
] 5
1
=π
((
52
2
− 5
)
−
(
12
2
− 1
))
= 8 π
Verify your result with a calculator.
Example 2
Find the volume of the solid generated by revolving about thex-axis the region bounded by
the graph ofy=
√
cosxwhere 0≤x≤
π
2
, thex-axis, and they-axis.
Step 1: Draw a sketch. (See Figure 13.4-8.)
y
x
y = cos x
0
1
π
2
Figure 13.4-8
Step 2: Determine the radius from a cross section.
r= f(x)=
√
cosx
Step 3: Set up an integral.
V=π
∫π/ 2
0
(√
cosx
) 2
dx=π
∫π/ 2
0
cosxdx