MA 3972-MA-Book April 11, 2018 16:1
Areas and Volumes 299About a linex=h:
V=π∫ba[
(f(x)−h)^2 −(g(x)−h)^2]
dx.About a liney=k:
V=π∫dc[
(p(y)−k)^2 −(q(y)−k)^2]
dy.Example 1
Using the Washer Method, find the volume of the solid generated by revolving the region
bounded byy=x^3 andy=xin the first quadrant about thex-axis.
Step 1: Draw a sketch. (See Figure 13.4-12.)
yx
0y =xy =x^3(1, 1)Figure 13.4-12To find the points of intersection, setx=x^3 ⇒x^3 −x=0orx(x^2 −1)=0, or
x=−1, 0, 1. In the first quadrantx=0, 1.Step 2: Determine the outer and inner radii of a washer.
The outer radius=xand inner radius=x^3.
Step 3: Set up an integral.
V=∫ 10[
x^2 −(x^3 )^2]
dxStep 4: Evaluate the integral.
V=∫ 10(
x^2 −x^6)
dx=π[
x^3
3−
x^7
7] 10=π(
1
3−
1
7
)
=
4 π
21Verify your result with a calculator.