MA 3972-MA-Book April 11, 2018 16:1Areas and Volumes 301yxx = yx = y^210(1, 1)Figure 13.4-14Intersection points:y=x^2 ;x=y^2 ⇒y=±√
x.
Setx^2 =√
x⇒x^4 =x⇒x^4 −x= 0 ⇒x(x^3 −1)= 0 ⇒x=0orx= 1
x=0, y=0(0,0)
x=1, y=1(1,1).Step 2: Determine the outer and inner radii of a washer.
The outer radius:
x=√yand inner radius:x=y^2.
Step 3: Set up an integral.V=π∫ 10(
(√y)^2 −(
y^2) 2 )
dyStep 4: Evaluate the integral.Enter∫ (
π∗(
(√y)∧ 2 −(y∧ 2 )∧ 2)
, y,0,1)
and obtain
3 π
10.
Thus, the volume of the solid is
3 π
10.
13.5 Rapid Review
- Iff(x)=
∫x0g(t)dtand the graph ofgis shown in Figure 13.5-1. Find f(3).Answer: f( 3 )=∫ 30g(t)dt=∫ 10g(t)dt+∫ 31g(t)dt= 0. 5 − 1. 5 =− 1