MA 3972-MA-Book April 11, 2018 16:1
310 STEP 4. Review the Knowledge You Need to Score High
Step 1: x^2 +y^2 = 4 ⇒y^2 = 4 −x^2 ⇒
y=±
√
4 −x^2
Lets=a side of an equilateral
triangle
s= 2
√
4 −x^2.
Step 2: Area of a cross section:
A(x)=
s^2
√
3
4
=
(
2
√
4 −x^2
) 2 √
3
4
.
Step 3: V=
∫ 2
− 2
(
2
√
4 −x^2
) 2
√
3
4
dx
=
∫ 2
− 2
√
3(4−x^2 )dx
Step 4: Enter
∫ (√
(3)∗(4−x^2 ),x, −2, 2
)
and obtain
32
√
3
3
.
- (See Figure 13.8-12.)
y
y = x – 2
x = y^2
(4, 2)
(1, –1)
x
2
0
- 1
Figure 13.8-12
Step 1: Using the Washer Method:
Points of Intersection:
y=x− 2 ⇒x=y+ 2
Sety^2 =y+ 2
⇒y^2 −y− 2 = 0
⇒(y−2)(y+1)= 0
ory=−1ory=2.
Outer radius=y+2;
Inner radius=y^2.
Step 2: V=π
∫ 2
− 1
((
y+ 2
) 2
−
(
y^2
) 2 )
dy
Step 3: Enter
π
∫ (
(y+ 2 )∧ 2 −y∧4,−1, 2)
and obtain
72
5
π.
- (See Figure 13.8-13.)
0
(0, 8) C
y
x
R 1
2
Figure 13.8-13
Step 1: Using the Washer Method:
y=8, y=x^3
Outer radius =8;
Inner radius =x^3.
V=π
∫ 2
0
(
82 −
(
x^3
) 2 )
dx
Step 2: Enter
∫
π
(
82 −x^6 , x,0,2
)
and obtain
768 π
7