MA 3972-MA-Book April 11, 2018 16:1310 STEP 4. Review the Knowledge You Need to Score High
Step 1: x^2 +y^2 = 4 ⇒y^2 = 4 −x^2 ⇒
y=±√
4 −x^2
Lets=a side of an equilateral
triangle
s= 2√
4 −x^2.
Step 2: Area of a cross section:A(x)=
s^2√
3
4=
(
2√
4 −x^2) 2 √
3
4.
Step 3: V=∫ 2− 2(
2√
4 −x^2) 2√
3
4
dx=
∫ 2− 2√
3(4−x^2 )dxStep 4: Enter∫ (√
(3)∗(4−x^2 ),x, −2, 2)and obtain32
√
3
3.
- (See Figure 13.8-12.)
y
y = x – 2
x = y^2(4, 2)(1, –1)x20- 1
Figure 13.8-12Step 1: Using the Washer Method:
Points of Intersection:
y=x− 2 ⇒x=y+ 2
Sety^2 =y+ 2
⇒y^2 −y− 2 = 0⇒(y−2)(y+1)= 0
ory=−1ory=2.Outer radius=y+2;
Inner radius=y^2.Step 2: V=π∫ 2− 1((
y+ 2) 2
−(
y^2) 2 )
dyStep 3: Enterπ∫ (
(y+ 2 )∧ 2 −y∧4,−1, 2)and obtain72
5
π.- (See Figure 13.8-13.)
0(0, 8) CyxR 12Figure 13.8-13Step 1: Using the Washer Method:
y=8, y=x^3
Outer radius =8;
Inner radius =x^3.V=π∫ 20(
82 −(
x^3) 2 )
dxStep 2: Enter∫
π(
82 −x^6 , x,0,2)and obtain
768 π
7