MA 3972-MA-Book April 11, 2018 16:1312 STEP 4. Review the Knowledge You Need to Score High
Area of RectII = f(6)Δx 2 =(3.61)(4)= 14. 44.Area of RectIII=f(10)Δx 3 =(4.58)(4)= 18. 32.Total Area= 8. 96 + 14. 44 + 18. 32 = 41. 72.
The area under the curve is approximately
41.72.13.9 Solutions to Cumulative Review Problems
- (See Figure 13.9-1.)
[–3, 3] by [–1, 7]
Figure 13.9-1
∫a−aex
2
dx=∫ 0−aex
2
dx+∫a0ex
2
dxSinceex^2 is an even function, thus∫ 0−aex^2 dx=∫a0ex^2 dx.k= 2∫a0ex
2
dxand∫a0ex
2
dx=
k
2.
- (See Figure 13.9-2.)
9xyθFigure 13.9-2sinθ=9
xDifferentiate both sides:cosθ
dθ
dt
=(9)(−x−^2 )
dx
dt.
Whenx=15, 9^2 +y^2 = 152 ⇒ y= 12.Thus, cosθ=12
15
=
4
5
;
dx
dt
=−2 ft/sec.4
5dθ
dt= 9
(
−1
152
)
(−2)=
dθ
dt=
18
152
5
4
=
1
10
radian/sec.- (See Figure 13.9-3.)
[–2, 5] by [–2, 6]
Figure 13.9-3Step 1: Distance Formula:L=√
(x− 4 )^2 +(y− 1 )^2=
√
(x− 4 )^2 +(
x^2
2− 1
) 2where the domain is all real
numbers.
Step 2: Entery 1 =
√
((x−4)∧ 2 +(. 5 x∧ 2 −1)∧2)
Entery 2 =d(
y 1 (x),x)
.