5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:1

Areas and Volumes 313

Step 3: Use the [Zero] function and
obtainx=2 fory 2.
Step 4: Use the First Derivative Test.
(See Figures 13.9-4 and 13.9-5.)
Atx=2,Lhas a relative
minimum. Since atx=2,Lhas
the only relative extremum, it is
an absolute minimum.

[–3, 3] by [– 15 , 15]
Figure 13.9-4


  • 0+


decr. 2 incr.

rel. min.

y 2 =(
dL (
dx

L

Figure 13.9-5

Step 5: Atx=2,y=

1


2


(
x^2

)
=
1
2

(
22

)
= 2 .Thus, the point on

y=

1


2


(
x^2

)
closest to the point
(4, 1) is the point (2, 2).


  1. (a)s(0)=0 and


s(t)=


v(t)dt=


tcos(t^2 +1)dt.

Enter


(x∗cos(x∧ 2 +1), x)

and obtain
sin(x^2 +1)
2

.


Thus, s(t)=
sin(t^2 +1)
2

+C.


Sinces(0)= 0 ⇒
sin(0^2 +1)
2

+C= 0



. 841471


2


+C= 0


⇒C=− 0. 420735 =− 0. 421


s(t)=
sin(t^2 +1)
2

− 0. 420735


s(2)=
sin(2^2 +1)
2

− 0. 420735


=− 0. 900197 ≈− 0. 900.


(b)v(2)=2 cos(2^2 +1)=2 cos(5)=
0. 567324
Sincev(2)>0, the particle is moving
to the right att=2.

(c) a(t)=v′(t)
Enterd(x∗cos(x∧ 2 +1), x)|x=2 and
obtain 7.95506.
Thus, the velocity of the particle is
increasing att=2, sincea(2)>0.


  1. (See Figure 13.9-6.)


[–π, π] by [–1, 2]
Figure 13.9-6
Free download pdf