5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1

MA 3972-MA-Book April 11, 2018 16:5


More Applications of Definite Integrals 321

Total Distance Traveled

∫ 2

1

v(t)dt+

∫ 3

2

−v(t)dt+

∫ 4

3

v(t)dt.

Enter


(y1(x),x,1,2)and obtain

1


4


.


Enter


(−y1(x),x,2,3)and obtain

1


4


.


Enter


(y1(x),x,3,4)and obtain

9


4


.


Thus, the total distance traveled is

(
1
4

+


1


4


+


9


4


)
=

11


4


.


Example 4


The acceleration function of a moving particle on a coordinate line isa(t)=−4 andv 0 =
12 for 0≤t≤8. Find the total distance traveled by the particle during 0≤t≤8.


a(t)=− 4

v(t)=


a(t)dt=


− 4 dt=− 4 t+C

Sincev 0 = 12 ⇒−4(0)+C=12 orC= 12.
Thus,v(t)=− 4 t+ 12.

Total Distance Traveled=

∫ 8

0

∣∣
− 4 t+ 12

∣∣
dt.

Let− 4 t+ 12 = 0 ⇒t= 3.

|− 4 t+ 12 |=

{
− 4 t+ 12 if 0≤t≤ 3
−(− 4 t+12) ift> 3
∫ 8

0

∣∣
− 4 t+ 12

∣∣
dt=

∫ 3

0

∣∣
− 4 t+ 12

∣∣
dt+

∫ 8

3

−(− 4 t+12)dt

=


[
− 12 t^2 + 12 t

] 3
0 +

[
2 t^2 + 12 t

] 8
3
= 18 + 50 = 68.
Thus, the total distance traveled by the particle is 68.

Example 5


The velocity function of a moving particle on a coordinate line isv(t)=3 cos(2t) for
0 ≤t≤ 2 π. Using a calculator:


(a) Determine when the particle is moving to the right.

(b) Determine when the particle stops.


(c) Determine the total distance traveled by the particle during 0≤t≤ 2 π.
Free download pdf