5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:5

More Applications of Definite Integrals 327

Step 2: y(t)=y 0 ekt

y(t)= 60 e


⎢⎣−ln2
5750


⎥⎦

y(t)= 60 e


⎢⎣−ln2
5750


⎥⎦(3000)

y(3000)≈ 41. 7919
Thus, there will be approximately 41.792 grams of carbon-14 after 3000 years.

Separable Differential Equations
General Procedure

STRATEGY Steps:



  1. Separate the variables:g(y)dy=f(x)dx.

  2. Integrate both sides:



g(y)dy=


f(x)dx.


  1. Solve foryto get a general solution.

  2. Substitute given conditions to get a particular solution.

  3. Verify your result by differentiating.


Example 1

Given
dy
dx
= 4 x^3 y^2 andy(1)=−

1


2


, solve the differential equation.

Step 1: Separate the variables:

1


y^2
dy= 4 x^3 dx.

Step 2: Integrate both sides:


1
y^2
dy=


4 x^3 dx;−

1


y
=x^4 +C.

Step 3: General solution:y=

− 1


x^4 +C

.


Step 4: Particular solution:−

1


2


=


− 1


1 +C


⇒c=1;y=

− 1


x^4 + 1

.


Step 5: Verify the result by differentiating.

y=

− 1


x^4 + 1
=(−1) (x^4 +1)−^1

dy
dx

=(−1) (−1) (x^4 +1)−^2 (4x^3 )=
4 x^3
(x^4 +1)^2

.


Note thaty=

− 1


x^4 + 1
impliesy^2 =

1


(x^4 +1)^2

.


Thus,
dy
dx

=


4 x^3
(x^4 +1)^2

= 4 x^3 y^2.
Free download pdf