MA 3972-MA-Book April 11, 2018 16:5
328 STEP 4. Review the Knowledge You Need to Score High
Example 2
Find a solution of the differentiation equation
dy
dx
=xsin(x^2 );y(0)=−1.
Step 1: Separate the variables:dy=xsin(x^2 )dx.
Step 2: Integrate both sides:
∫
dy=
∫
xsin(x^2 )dx;
∫
dy=y.
Letu=x^2 ;du= 2 xdxor
du
2
=xdx.
∫
xsin(x^2 )dx=
∫
sinu
(
du
2
)
=
1
2
∫
sinudu=−
1
2
cosu+C
=−
1
2
cos(x^2 )+C
Thus,y=−
1
2
cos(x^2 )+C.
Step 3: Substitute given condition:
y(0)=−1;− 1 =−
1
2
cos(0)+C;− 1 =
− 1
2
+C;−
1
2
=C.
Thus,y=−
1
2
cos(x^2 )−
1
2
.
Step 4: Verify the result by differentiating:
dy
dx
=
1
2
[
sin(x^2 )
]
(2x)=xsin(x^2 ).
Example 3
If
d^2 y
dx^2
= 2 x+1 and atx=0,y′=−1, andy=3, find a solution of the differential equation.
Step 1: Rewrite
d^2 y
dx^2
as
dy′
dx
;
dy′
dx
= 2 x+1.
Step 2: Separate the variables:dy′=(2x+1)dx.
Step 3: Integrate both sides:
∫
dy′=
∫
(2x+1)dx;y′=x^2 +x+C 1.
Step 4: Substitute given condition: Atx=0,y′=−1;− 1 = 0 + 0 +C 1 ⇒C 1 =−1. Thus,
y′=x^2 +x−1.
Step 5: Rewrite:y′=
dy
dx
;
dy
dx
=x^2 +x−1.