5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1

MA 3972-MA-Book April 11, 2018 16:5


More Applications of Definite Integrals 329

Step 6: Separate the variables:dy=(x^2 +x−1)dx.


Step 7: Integrate both sides:



dy=


(x^2 +x−1)dx

y=
x^3
3

+


x^2
2
−x+C 2.

Step 8: Substitute given condition: Atx=0,y=3; 3= 0 + 0 − 0 +C 2 ⇒C 2 =3.


Therefore,y=
x^3
3

+


x^2
2
−x+ 3.

Step 9: Verify the result by differentiating:


y=
x^3
3

+


x^2
2
−x+ 3

dy
dx
=x^2 +x−1;
d^2 y
dx^2
= 2 x+ 1.

Example 4


Find the general solution of the differential equation
dy
dx


=


2 xy
x^2 + 1

.


Step 1: Separate the variables:


dy
y

=


2 x
x^2 + 1

dx.

Step 2: Integrate both sides:



dy
y

=



2 x
x^2 + 1
dx(letu=x^2 +1;du= 2 xdx)

ln|y|=ln(x^2 +1)+C 1.

Step 3: General solution: solve fory.


eln|y|=eln(x^2 +1)+C^1

|y|=eln(x^2 +1)·eC^1 ;|y|=eC^1 (x^2 +1)
y=±eC^1 (x^2 +1)
The general solution isy=C(x^2 +1).

Step 4: Verify the result by differentiating:


y=C(x^2 +1)
dy
dx
= 2 Cx= 2 x
C(x^2 +1)
x^2 + 1

=


2 xy
x^2 + 1

.

Free download pdf