MA 3972-MA-Book April 11, 2018 16:5
338 STEP 4. Review the Knowledge You Need to Score High
14.9 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.
1.
∫ 4
2
x^3 dx= f(c)(4−2)
∫ 4
2
x^3 dx=
x^4
4
] 4
2
=
(
44
4
)
−
(
24
4
)
= 60
2 f(c)= 60 ⇒ f(c)= 30
c^3 = 30 ⇒C= 30 (1/3).
- Average value=
1
8 − 0
∫ 1
0
f(x)dx
=
1
8
(
1
2
(8)(4)
)
= 2.
- Displacement=s(4)−s(1)=− 15 −(−12)=− 3.
Distance traveled=
∫ 4
1
∣
∣v(t)
∣
∣dt.
v(t)=s′(t)= 2 t− 6
Set 2t− 6 = 0 ⇒t= 3
∣∣
2 t− 6
∣∣
=
{
−(2t−6) if 0≤t< 3
2 t−6if3≤t≤ 10
∫ 4
1
|v(t)|dt=
∫ 3
1
−(2t−6)dt+
∫ 4
3
(2t−6)dt
=
[
−t^2 + 6 t
] 3
1 +
[
t^2 − 6 t
] 4
3
= 4 + 1 = 5.
- Position functions(t)=
∫
v(t)dt
=
∫
(2t+1)dt
=t^2 +t+C
s(1)=− 4 ⇒(1)^2
+ 1 +C
=−4orC=− 6
s(t)=t^2 +t− 6
s(5)= 52 + 5 − 6 = 24.
- Total loss=
∫ 5
0
p(t)dt
=
∫ 5
0
(50t−600)dt
= 25 t^2 − 600 t
] 5
0 =−$2375.
6.v(t)=
∫
a(t)dt=
∫
− 2 dt=− 2 t+C
v 0 = 10 ⇒−2(0)+C=10 orC= 10
v(t)=− 2 t+ 10
Distance traveled=
∫ 4
0
∣∣
v(t)
∣∣
dt.
Setv(t)= 0 ⇒− 2 t+ 10 =0ort=5.
|− 2 t+ 10 |=− 2 t+10 if 0≤t< 5
∫ 4
0
|v(t)|dt=
∫ 4
0
(− 2 t+10)dt
=−t^2 + 10 t
] 4
0 =^24
- Total distance traveled
=
∫ 8
0
∣∣
v(t)
∣∣
dt+
∣
∣∣
∣
∫ 12
8
v(t)
∣
∣∣
∣
=
1
2
(8) (10)+
1
2
(4) (10)
=60 meters.
- Total leakage=
∫ 3
0
10 e^0.^2 t= 50 e^0.^2 t
] 3
0
= 91. 1059 − 50
= 41. 1059 =41 gallons.
Total change in temperature
∫ 5
0
−cos
(
t
4
)
dt
=−4 sin
(
t
4
)] 5
0
=− 3. 79594 − 0
=− 3. 79594 ◦F.
Thus, the temperature of coffee after 5
minutes is (92− 3 .79594)≈ 88. 204 ◦F.