MA 3972-MA-Book April 11, 2018 16:5
More Applications of Definite Integrals 339
- y(t)=y 0 ekt
Half-life=4500 years⇒
1
2
=e^4500 k.
Take ln of both sides:
ln
(
1
2
)
=lne^4500 k
⇒−ln 2= 4500 k
ork=
−ln 2
4500
.
y(t)= 100 e
(−ln 2
4500
)
(5000)=25(2 2 / (^9) )
≈ 46. 293.
There are approximately 46.29 grams left.
- Step 1: Separate the variables:
dy=xcos(x^2 )dx.
Step 2: Integrate both sides:
∫
dy=
∫
xcos(x^2 )dx
∫
dy=y
∫
xcos (x^2 )dx: Letu=x^2 ;
du= 2 xdx,
du
2
=xdx
∫
xcos(x^2 )dx=
∫
cosu
du
2
=
sinu
2
+c=
sin (x^2 )
2
+C.
Thus,y=
sin (x^2 )
2
+C.
Step 3: Substitute given values.
y(0)=
sin (0)
2
+C=π⇒C=π
y=
sin (x^2 )
2
+π
Step 4: Verify result by differentiating:
dy
dx
=
cos (x^2 )(2x)
2
=xcos(x^2 ).
- Step 1: Rewrite
d^2 y
dx^2
as
dy′
dx
dy′
dx
=x− 5.
Step 2: Separate variables:
dy′=(x−5)dx.
Step 3: Integrate both sides:
∫
dy′=
∫
(x−5)dx
y′=
x^2
2
− 5 x+C 1.
Step 4: Substitute given values:
Atx=0,y′=
0
2
−5(0)+C 1
=− 2 ⇒C 1 =− 2
y′=
x^2
2
− 5 x− 2.
Step 5: Rewrite:
y′=
dy
dx
;
dy
dx
=
x^2
2
− 5 x− 2.
Step 6: Separate the variables:
dy=
(
x^2
2
− 5 x− 2
)
dx.
Step 7: Integrate both sides:
∫
dy=
∫ (
x^2
2
− 5 x− 2
)
dx.
y=
x^3
6
−
5 x^2
2
− 2 x+C 2
Step 8: Substitute given values:
Atx=0,y= 0 − 0 − 0 +C 2
= 1 ⇒C 2 = 1
y=
x^3
6
−
5 x^2
2
− 2 x+ 1.