5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:5

More Applications of Definite Integrals 341

eln

∣∣y 1 / 2
x+ 1

∣∣
=eln 2
y^1 /^2
x+ 1

= 2


y^1 /^2 = 2 (x+ 1 )
y=( 2 )^2 (x+ 1 )^2
y= 4 (x+ 1 )^2.
Step 4: Verify result by differentiating:
dy
dx
= 4 ( 2 )(x+ 1 )=8(x+1).

Compare with
dy
dx

=


2 y
x+ 1

=
2(4(x+1)^2 )
(x+1)
=8(x+1).


  1. y(t)=y 0 ekt


y 0 =750, 000
y( 22 )=(750, 000)e(^0.^03 )(^22 )


{
1. 45109 E 6 ≈1, 451, 090 using a TI-89,
1, 451, 094 using a TI-85.


  1. Step 1: Separate the variables:


4 ey=
dy
dx
− 3 xey

4 ey+ 3 xey=
dy
dx

ey(4+ 3 x)=
dy
dx

(4+ 3 x)dx=
dy
ey
=e−ydy.

Step 2: Integrate both sides:

( 4 + 3 x)dx=


e−ydy

4 x+
3 x^2
2
=−e−y+C

Switch sides:e−y=−
3 x^2
2

− 4 x+C.

Step 3: Substitute given value:y( 0 )= 0
⇒e^0 = 0 − 0 +c⇒c=1.
Step 4: Take ln of both sides:

e−y=−
3 x^2
2
− 4 x+ 1

ln(e−y)=ln

(

3 x^2
2
− 4 x+ 1

)

y=−ln

(
1 − 4 x−
3 x^2
2

)
.

Step 5: Verify result by differentiating:
Enterd(−ln(1− 4 x− 3
(x−∧^2 )/2),x) and obtain
− 2 ( 3 x+ 4 )
3 x^2 + 8 x− 2
, which is equivalent

toey(4+ 3 x).


  1. y(t)=y 0 ekt
    k= 0 .0625,y( 10 )=50, 000
    50, 000=y 0 e^10 (^0.^0625 )


y 0 =

50, 000


e^0.^625


⎪⎨

⎪⎩

$26763.1 using a TI-89,
$26763.071426≈$26763. 07
using a TI-85.


  1. Setv(t)= 2 − 6 e−t=0. Using the [Zero]
    function on your calculator, compute
    t= 1 .09861.
    Distance traveled=


∫ 10

0

|v(t)|dt

∣∣
2 − 6 e−t

∣∣
=

{
−(2− 6 e−t)if0≤t< 1. 09861
2 − 6 e−t if t≥ 1. 09861
∫ 10

0

| 2 − 6 e−t|dt=

∫ 1. 09861

0

−(2− 6 e−t)dt

+


∫ 10

1. 09861

( 2 − 6 e−t)dt

= 1. 80278 + 15. 803 = 17. 606.

Alternatively, use the [nInt] function on
the calculator.
Enter nInt(abs(2− 6 e∧(−x)), x, 0, 10) and
obtain the same result.
Free download pdf