5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:5

More Applications of Definite Integrals 343

Step 4: Verify result by
differentiating

y=2(2x+1)^1 /^2
dy
dx

= 2


(
1
2

)
( 2 x+ 1 )−^1 /^2 ( 2 )

=


2



2 x+ 1

.


Compare this with:

dy
dx

=


y
2 x+ 1

=


2 ( 2 x+ 1 )^1 /^2
2 x+ 1

=
√^2
2 x+ 1

.


Thus, the function is
y= f(x)=2(2x+1)^1 /^2.

(d) f(x)=2(2x+1)^1 /^2
f(0.1)=2(2(0.1)+1)^1 /^2 =2(1.2)^1 /^2
≈ 2. 191


  1. See Figure 14.10-1.


[–π, π] by [–4, 4]
Figure 14.10-1

(a) Intersection points: Using the
[Intersection] function on the
calculator, you havex=0 and
x= 1 .37131.

Area ofR=

∫ 1. 37131

0

[3 sinx−(ex−1)]dx.

Enter


(3 sin(x))−(e∧(x)−1),x,0,

1.37131 and obtain 0.836303.
The area of regionRis approximately
0.836.
(b) Using the Washer Method, volume of
R=π

∫ 1. 37131

0

[
(3 sinx)^2 −(ex−1)^2

]
dx.

Enterπ


((3 sin(x))∧ 2 −(e∧(x)−1)∧2,
x,0,1.37131) and obtain 2.54273π
or 7.98824.
Thus, the volume of the solid is 7.988.

(c) Volume of solid=π

∫ 1. 37131

0

(Area of
Cross Section)dx.
Area of Cross Section=

1


2


πr^2

=

1


2


π

(
1
2
(3 sinx−(ex−1))

) 2
.

Enter

(
π
2

)
1
4



((3 sin(x)−
(e∧(x)−1))∧2,x,0,1.37131)
and obtain 0.077184πor 0.24248.
Thus, the volume of the solid is
approximately 0.077184πor 0.242.
Free download pdf