MA 3972-MA-Book April 11, 2018 16:32
350 STEP 5. Build Your Test-Taking Confidence
6.
∫
x(3x^2 −^4 )dx=
(A)
3 x^2 −^4
2ln3
+c (B)
ln 3(3x^2 −^4 )
2
+c
(C)
3 x^2 −^3
2
+c (D) 3x^2 −^3 +c
y
x
D
C
B
A
- In the figure above, which of the four given
points on the graph is
dy
dx
0 and
d^2 y
dx^2
<0?
(A) A (B) B
(C) C (D) D
x h(x) k(x) h′(x) k′(x)
4 6 4 1 3
8 12 8 2 5
- The table above shows the values of the
functionshandkand their derivatives atx= 4
andx=8. What is the value of
d
dx
h(k(x))
∣∣
∣∣
x= 4
?
(A) 3 (B) 4
(C) 12 (D) 24
- Iff(x)=
∫ 1
x^2
1
2 +t^2
dt, thenf′(2)=
(A) −
2
9
(B)
1
18
(C)
1
6
(D)
2
9
- 4 – 20 2 4
y
x
- The figure above shows the graph of a
continuous function ffor− 4 ≤x≤4. On
what intervals isf′(x)>0 for all values ofx?
(A) (−4, 2) only
(B) (−4,−2) and (0, 2)
(C) (−2, 0) only
(D) (0, 4) - Ifs(t)=
t^3
3
− 2 t^2 + 3 t+4 fort≥0 is the
position of a moving particle on a straight line,
at which of the following intervals oftis the
speed of the particle decreasing?
(A) (1, 2) only
(B) (3,∞) only
(C) (0, 1) and (2, 3)
(D) (1, 2) and (3,∞)
12.xlim→−∞
√
4 x^2 + 3
2 x− 1
is
(A) − 2 (B) − 1
(C) 1 (D) nonexistent
13.
∫ 1
− 1
2
1 +x^2
dx=
(A) −π (B) 0
(C)
π
2
(D) π