5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:20

AP Calculus AB Practice Exam 2 379


  1. Iff(x)=5 cos^2 (π−x), then f′


(
π
2

)
is

(A) 0 (B) − 5
(C) 5 (D) − 10


  1. g(x)=


∫x

1

3 t
t^3 + 1
dt, theng′(2) is

(A) 0 (B) −

2


3


(C)


2


3


(D)


5


6



  1. If


∫ 2

k

(2x−2)dx=−3, a possible value ofkis

(A) − 2 (B) 0
(C) 1 (D) 3


  1. If


∫a

0

f(x)dx=−

∫ 0

−a

f(x)dxfor all positive

values ofa, then which of the following could
be the graph off? (See below.)

y

0 x

y

0 x

(A) (B)

y

0 x

(C) y

0 x

(D)


  1. A functionfis continuous on [1, 5], and some
    of the values offare shown below:


x 1 3 5
f(x) − 2 b − 1

Iff has only one root,r, on the closed inter-
val [1, 5], andr=3, then a possible value ofbis
(A) − 1 (B) 0
(C) 1 (D) 3


  1. Given the equationV=


1


3


πr^2 (5−r), what is
the instantaneous rate of change ofVwith
respect toratr=5?
(A) −
25 π
3

(B)


25 π
3
(C)
50 π
3
(D) 25π


  1. What is the slope of the tangent to the curve
    x^3 −y^2 =1atx=1?
    (A) 0 (B)


3


2



2
(C)

3


2


(D) Undefined


  1. The graph of functionfis shown below.
    Which of the following is true forf on the
    interval (a,b)? y


x
ab^0

f

I. The functionf is differentiable on (a,b).
II. There exists a numberkon (a,b) such
thatf′(k)=0.
III. f′′>0on(a,b).
(A) I only
(B) II only
(C) I and II only
(D) II and III only


  1. The velocity function of a moving particle on
    thex-axis is given asv(t)=t^2 − 3 t−10. For
    what positive values oftis the particle’s speed
    increasing?
    (A) 0<t<


3


2


only

(B) t>

3


2


only
(C) t>5 only
(D) 0<t<

3


2


andt>5 only

GO ON TO THE NEXT PAGE
Free download pdf