MA 3972-MA-Book April 11, 2018 16:20390 STEP 5. Build Your Test-Taking Confidence
Solutions to AB Practice Exam 2 Section I
Section I Part A- The correct answer is (B).
∫ 8
0x^2 /^3 dx=
x^5 /^3
5 / 3] 80=
3 x^5 /^3
5] 80=3(8)^5 /^3
5
− 0 =
3(32)
5
=
96
5
- The correct answer is (B).
The lim
x→ 0
2 −2 cosx= 2 −2 cos(0)=0, andlim
x→ 0x=0. Therefore, lim
x→ 02 −2 cosx
x
is anindeterminate form of0
0
. ApplyingL'Hôpital's
Rule, you have lim
x→ 02 sinx
1=
2 sin 0
1=0.
- The correct answer is (C).
lim
x→− 2 +
∣
∣x− 1
∣
∣=
∣
∣− 2 − 1
∣
∣= 3lim
x→− 2 −(2x+7)=2(−2)+ 7 = 3Thus, lim
x→− 2f(x)= 3.- The correct answer is (D).
decr. decr.decr.incr.incr.ab0f′ –f′ff′′f+ –Concave
upwardConcave
downward+ –- The correct answer is (D).∫
x
π/ 2
2 costdt=2 sint]x
π/ 2 =2 sinx−2(1)
=2 sinx− 2- The correct answer is (A).
y= 3 e−^2 x;
dy
dx
= 3 e−^2 x(−2)=− 6 e−^2 x
dy
dx∣∣
∣
∣x=ln 2 =−^6 e−2ln2=− 6 (eln 2)−^2=−6(2)−^2
=− 6
(
1
4)
=−3
2
Slope of normal line atx=ln 2 is2
3
.
Atx=ln 2,y= 3 e−2ln2=3
4
; point(
ln 2,3
4
)
.
Equation of normal line:
y−3
4
=
2
3
(x −ln 2) ory=2
3
(x −ln 2)+3
4
.
- The correct answer is (B).
f′(x)=lim
h→ 0
f(x+h)−f(x)
hThus, lim
h→ 0csc(
π
4
+h)
−csc(
π
4)h=
d(cscx)
dx∣
∣∣
∣
x=π 4=−csc(
π
4)
cot(
π
4)=−
√
2(1)=−√
2.- The correct answer is (D).
Letu=x^3 +1,du= 3 x^2 dxor
du
3
=x^2 dx.
f(x)=∫
x^2√
x^3 + 1 dx=∫√
u
du
3=1
3
∫
u^1 /^2 du