MA 3972-MA-Book April 11, 2018 16:20
390 STEP 5. Build Your Test-Taking Confidence
Solutions to AB Practice Exam 2 Section I
Section I Part A
- The correct answer is (B).
∫ 8
0
x^2 /^3 dx=
x^5 /^3
5 / 3
] 8
0
=
3 x^5 /^3
5
] 8
0
=
3(8)^5 /^3
5
− 0 =
3(32)
5
=
96
5
- The correct answer is (B).
The lim
x→ 0
2 −2 cosx= 2 −2 cos(0)=0, and
lim
x→ 0
x=0. Therefore, lim
x→ 0
2 −2 cosx
x
is an
indeterminate form of
0
0
. ApplyingL'Hôpital's
Rule, you have lim
x→ 0
2 sinx
1
=
2 sin 0
1
=0.
- The correct answer is (C).
lim
x→− 2 +
∣
∣x− 1
∣
∣=
∣
∣− 2 − 1
∣
∣= 3
lim
x→− 2 −
(2x+7)=2(−2)+ 7 = 3
Thus, lim
x→− 2
f(x)= 3.
- The correct answer is (D).
decr. decr.
decr.
incr.
incr.
ab
0
f′ –
f′
f
f′′
f
+ –
Concave
upward
Concave
downward
+ –
- The correct answer is (D).∫
x
π/ 2
2 costdt=2 sint
]x
π/ 2 =2 sinx−2(1)
=2 sinx− 2
- The correct answer is (A).
y= 3 e−^2 x;
dy
dx
= 3 e−^2 x(−2)=− 6 e−^2 x
dy
dx
∣∣
∣
∣x=ln 2 =−^6 e
−2ln2=− 6 (eln 2)−^2
=−6(2)−^2
=− 6
(
1
4
)
=−
3
2
Slope of normal line atx=ln 2 is
2
3
.
Atx=ln 2,y= 3 e−2ln2=
3
4
; point
(
ln 2,
3
4
)
.
Equation of normal line:
y−
3
4
=
2
3
(x −ln 2) ory=
2
3
(x −ln 2)+
3
4
.
- The correct answer is (B).
f′(x)=lim
h→ 0
f(x+h)−f(x)
h
Thus, lim
h→ 0
csc
(
π
4
+h
)
−csc
(
π
4
)
h
=
d(cscx)
dx
∣
∣∣
∣
x=π 4
=−csc
(
π
4
)
cot
(
π
4
)
=−
√
2(1)=−
√
2.
- The correct answer is (D).
Letu=x^3 +1,du= 3 x^2 dxor
du
3
=x^2 dx.
f(x)=
∫
x^2
√
x^3 + 1 dx=
∫√
u
du
3
=
1
3
∫
u^1 /^2 du