5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:20

398 STEP 5. Build Your Test-Taking Confidence


(B) g′(t) =−4 sec^2

(
t
20

)(
1
20

)

g′(10)=−

1


5


sec^2

(
10
20

)
≈− 0. 26
(C) Set the temperature of the liquid equal to
86 ◦F. Using your calculator, let

y 1 = 90 −4 tan

(
x
20

)
; andy 2 = 86.

To find the intersection point ofy 1 andy 2 ,
lety 3 =y 1 −y2 and find the zeros ofy 3.
Using the [Zero] function of your
calculator, you obtainx= 15 .708. Since
y 1 <y 2 on the interval 15. 708 <x≤20,
the temperature of the liquid is below
86 ◦F when 15. 708 <t≤20.
(D) Average temperature below 86◦F

=

1


20 − 15. 708


∫ 20

15. 708
(
90 −4 tan

(
x
20

))
dx.

Using your calculator, you obtain:
Average temperature =

1


4. 292


(364.756)


≈ 84. 9851


≈ 84. 99 ◦F.


Section II Part B


  1. (A) The midpoints of three subintervals of
    equal length are:
    t=4, 12, and 20.
    The length of each interval is


24 − 0


3


=8.


Thus,

∫ 24

0

v(t)dt≈ 8 [v(4)+v(12)+v(20)]

≈8[25+ 15 +20]
=8(60)= 480.

(B) Average velocity =

1


24


∫ 24

0

v(t)dt


1


24


(480)=20 ft/s.

(C) Average acceleration=
v(24)−v(0)
24 − 0

=


30


24


= 1 .25 ft/s^2.
(D) a(t)=0att=6 andt=14, since the
slopes of tangents att=6 andt=14 are 0.

(E) a(20)≈
v(22)−v(18)
22 − 18


25 − 15


4



10


4


≈ 2 .5ft/s^2


  1. (A) f′(x)= 3


(
e−^2 x^2

)
(− 4 x)=− 12 xe−^2 x^2
Setting f′(x)=0,− 12 xe−^2 x^2 = 0
⇒x=0.
(B) f′′(x)=(−12)

(
e−^2 x^2

)

+(− 12 x)

(
e−^2 x^2

)
(− 4 x)

=− 12 e−^2 x
2
+ 48 x^2 e−^2 x
2

Setting f′′(x)=0, 12e−^2 x^2 + 48 x^2 e−^2 x^2 = 0
⇒ 48 x^2 e−^2 x^2 = 12 e−^2 x^2

⇒ 48 x^2 = 12 ⇒x^2 =

1


4


or

x=±

1


2


.


(C) limx→∞ 3 e−^2 x^2 =xlim→∞

3


e^2 x^2

= 0


x→lim−∞^3 e−^2 x^2 =xlim→−∞

3


e^2 x^2

= 0


(D)


incr. decr.
rel. max.

f′ +

f′

0 –

x
0
Free download pdf