MA 3972-MA-Book April 11, 2018 16:20
398 STEP 5. Build Your Test-Taking Confidence
(B) g′(t) =−4 sec^2
(
t
20
)(
1
20
)
g′(10)=−
1
5
sec^2
(
10
20
)
≈− 0. 26
(C) Set the temperature of the liquid equal to
86 ◦F. Using your calculator, let
y 1 = 90 −4 tan
(
x
20
)
; andy 2 = 86.
To find the intersection point ofy 1 andy 2 ,
lety 3 =y 1 −y2 and find the zeros ofy 3.
Using the [Zero] function of your
calculator, you obtainx= 15 .708. Since
y 1 <y 2 on the interval 15. 708 <x≤20,
the temperature of the liquid is below
86 ◦F when 15. 708 <t≤20.
(D) Average temperature below 86◦F
=
1
20 − 15. 708
∫ 20
15. 708
(
90 −4 tan
(
x
20
))
dx.
Using your calculator, you obtain:
Average temperature =
1
4. 292
(364.756)
≈ 84. 9851
≈ 84. 99 ◦F.
Section II Part B
- (A) The midpoints of three subintervals of
equal length are:
t=4, 12, and 20.
The length of each interval is
24 − 0
3
=8.
Thus,
∫ 24
0
v(t)dt≈ 8 [v(4)+v(12)+v(20)]
≈8[25+ 15 +20]
=8(60)= 480.
(B) Average velocity =
1
24
∫ 24
0
v(t)dt
≈
1
24
(480)=20 ft/s.
(C) Average acceleration=
v(24)−v(0)
24 − 0
=
30
24
= 1 .25 ft/s^2.
(D) a(t)=0att=6 andt=14, since the
slopes of tangents att=6 andt=14 are 0.
(E) a(20)≈
v(22)−v(18)
22 − 18
≈
25 − 15
4
≈
10
4
≈ 2 .5ft/s^2
- (A) f′(x)= 3
(
e−^2 x^2
)
(− 4 x)=− 12 xe−^2 x^2
Setting f′(x)=0,− 12 xe−^2 x^2 = 0
⇒x=0.
(B) f′′(x)=(−12)
(
e−^2 x^2
)
+(− 12 x)
(
e−^2 x^2
)
(− 4 x)
=− 12 e−^2 x
2
+ 48 x^2 e−^2 x
2
Setting f′′(x)=0, 12e−^2 x^2 + 48 x^2 e−^2 x^2 = 0
⇒ 48 x^2 e−^2 x^2 = 12 e−^2 x^2
⇒ 48 x^2 = 12 ⇒x^2 =
1
4
or
x=±
1
2
.
(C) limx→∞ 3 e−^2 x^2 =xlim→∞
3
e^2 x^2
= 0
x→lim−∞^3 e−^2 x^2 =xlim→−∞
3
e^2 x^2
= 0
(D)
incr. decr.
rel. max.
f′ +
f′
0 –
x
0