5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 16:20

AP Calculus AB Practice Exam 2 399

f′(x)=− 12 xe−^2 x^2 =
− 12 x
e^2 x^2
f(0)=3, since fhas only one critical
point (atx=0), thus atx=0,fhas an
absolute maximum. The absolute
maximum value is 3.

(E) f(x)=ae−bx
2
, a>0,b> 0
f′(x)=ae−bx^2 (− 2 bx)=− 2 abxe−bx^2
Setting
f′(x)=0,− 2 abxe−bx^2 = 0 ⇒x= 0

f′(x)=
− 2 abx
ebx^2

.


f′(x)>0ifx<0 andf′(x)<0if
x>0. Thus, f has a relative maximum at
x=0, and since it is the only critical point,
fhas an absolute maximum atx=0. Since
f(0)=a, the absolute maximum for fisa.


  1. (A) f(−3)=


∫− 3

0

g(t)dt=−

∫ 0

− 3

g(t)dt

=−


∫− 1

− 3

g(t)dt−

∫ 0

− 1

g(t)dt

=−


(

1


2


(2)(2)


)

(
1
2

(1)(2)


)

= 2 − 1 = 1


f(3)=

∫ 3

0

g(t)dt

=


∫ 1

0

g(t)dt+

∫ 3

1

g(t)dt

=


1


2


(1)(2)+


(

1


2


(1)(2)


)

= 1 − 1 = 0


(B) Note thatf′(x)=g(x), andg(x)<0on
(−3,−1) and (1, 3) and thatg(x)>0on
(−1, 1). The functionf increases on
(−1, 1) and decreases on (1, 3). Thusf
has a relative maximum atx=1. Also,f
decreases on (−3,−1) and increases on
(−1, 1). Thus,f has a relative minimum
atx=−1.

(C) f′(x)=g(x) andf′′(x)=g′(x)

f′′(x) = g′(x)+ – +
x


  • 3023


g(x) incr. decr. incr.

f Concave
upward

Concave
upward

Concave
downward

Change of
concavity

Change of
concavity

The functionfhas a change of concavity
atx=0 andx=2.

(D) f(1)=

∫ 1

0

g(t)dt=

1


2


(1)(2)= 1


f′(1)=g(1)= 0
Thus,m=0, point (1, 1); the equation of
the tangent line to f(x)atx=1isy=1.


  1. (A)
    dy
    dx


=


y
2 x^2

; (2,1)


dy
dx

∣∣

∣x=2,y= 1 =

1


2(2)^2


=


1


8


Equation of tangent:

y− 1 =

1


8


(x−2) or

y=

1


8


(x−2)+ 1.

(B) f(2.5)≈

1


8


(2. 5 −2)+ 1 = 1. 0625


≈ 1. 063


(C)


dy
dx

=


y
2 x^2
dy
y

=


dx
2 x^2

and


dy
y

=



dx
2 x^2
Free download pdf