MA 3972-MA-Book April 11, 2018 12:11
Take a Diagnostic Exam 23
- If f′(x)=g(x) andgis a continuous function
for all real values ofx, then
∫ 2
0
g(3x)dxis
(A)
1
3
f(6)−
1
3
f(0).
(B) f(2)− f(0).
(C) f(6)−f(0).
(D)
1
3
f(0)−
1
3
f(6).
- Evaluate
∫x
π
sin (2t)dt.
- If a function fis continuous for all values of
x, which of the following statements is/are
always true?
I.
∫c
a
f(x)dx=
∫b
a
f(x)dx
+
∫c
b
f(x)dx
II.
∫b
a
f(x)dx=
∫c
a
f(x)dx
−
∫b
c
f(x)dx
III.
∫c
b
f(x)dx=
∫a
b
f(x)dx
−
∫a
c
f(x)dx
- Ifg(x)=
∫x
π/ 2
2 sintdton
[
π
2
,
5 π
2
]
, find
the value(s) ofxwhereghas a local
minimum.
Chapter 13
- The graph of the velocity function of a
moving particle is shown in the following
figure. What is the total distance traveled by
the particle during 0≤t≤6?
0
10
− 10
20
2468
v
v(t)
(feet/second)
t
(seconds)
- The graph of fconsists of four line segments,
for− 1 ≤x≤5 as shown in the figure below.
What is the value of
∫ 5
− 1
f(x)dx?
y
f
x
− 1
− 1
1
012345
- Find the area of the region enclosed by the
graph ofy=x^2 −xand thex-axis. - If
∫k
−k
f(x)dx=0 for all real values ofk, then
which of the graphs shown on the next page
could be the graph of f?
- The area under the curvey=
√
xfromx= 1
tox=kis 8. Find the value ofk.
- For 0≤x≤ 3 π, find the area of the region
bounded by the graphs ofy=sinxand
y=cosx. - Let f be a continuous function on [0, 6] that
has selected values as shown below:
x 0123456
f(x)12510172637