5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 24, 2018 14:33

404 Appendix



  1. Double Angles:

    • sin 2θ=2 sinθcosθ

    • cos 2θ=cos^2 θ−sin^2 θor
      1 −2 sin^2 θor 2 cos^2 θ− 1.

    • cos^2 θ=^1 +cos 2θ
      2

    • sin^2 θ=^1 −cos 2θ
      2



  2. Pythagorean Identities:

    • sin^2 θ+cos^2 θ= 1

    • 1 +tan^2 θ=sec^2 θ

    • 1 +cot^2 θ=csc^2 θ



  3. Limits:


xlim→∞

1


x

= 0 limx→ 0
cosx− 1
x

= 0


limx→ 0
sinx
x

= (^1) hlim→∞
(
1 +


1


h

)h
=e

lim
h→ 0

eh− 1
h
= 1 limx→ 0 ( 1 +x)

(^1) x
=e



  1. L’Hôpital’sRule for Indeterminate Forms:
    Letlimrepresent one of the limits
    limx→c, lim
    x→c+
    , lim
    x→c−
    , limx→∞, or limx→−∞.
    Supposef(x) andg(x) are differentiable and
    g′(x)=0 nearc, except possibly atc, and
    suppose limf(x)=0 and limg(x)=0.
    Then the lim
    f(x)
    g(x)


is an indeterminate form of

the type

0


0


. Also, if limf(x)=±∞and


limg(x)=±∞, then the lim
f(x)
g(x)
is an

indeterminate form of the type



.


In both cases,

0


0


and



,L’Hôpital’sRule

states that lim
f(x)
g(x)

=lim
f′(x)
g′(x)

.



  1. Rules of Differentiation:


a. Definition of the Derivative of a Function:

f′(x)=lim
h→ 0

f(x+h)− f(x)
h

b. Power Rule:
d
dx
(xn)=nxn−^1
c. Sum and Difference Rules:
d
dx

(u±v)=du
dx

±


dv
dx
d. Product Rule:
d
dx
(uv)=v
du
dx
+u
dv
dx

e. Quotient Rule:

d
dx

(u
v

)
=

v
du
dx
−u
dv
dx
v^2

, v= 0

Summary of Sum, Difference, Product,
and Quotient Rules:

(u±v)′=u′±v′ (uv)′=u′v+v′u
(u
v

)′
=
u′v−v′u
v^2
f. Chain Rule:
d
dx
[f(g(x))]= f′(g(x))·g′(x)

or
dy
dx

=


dy
du

·


du
dx


  1. Inverse Function and Derivatives:


(
f−^1

)′
(x)=

1


f′(f−^1 (x))
or
dy
dx

=


1


dx/dy


  1. Differentiation and Integration Formulas,
    Integration Rules:


a.


f(x)dx=F(x)+C⇒F′(x)=f(x)

b.


af(x)dx=a


f(x)dx

c.


−f(x)dx=−


f(x)dx
Free download pdf