MA 3972-MA-Book April 11, 2018 12:11
26 STEP 2. Determine Your Test Readiness
3.4 Solutions to Diagnostic Test
Chapter 5
- Write 5x− 2 y=10 in slope-intercept form
y=mx+band obtainy=
5
2
x−5. The slope
of the liney=
5
2
x−5is
5
2
. Therefore, the
slope of the line perpendicular toy=
5
2
x− 5
is−
2
5
. Since the line perpendicular to
y=
5
2
x−5 also passes through the origin, its
y-intercept is 0 and its equation isy =−
2
5
x.
- Using your calculator, sety 1 = 3 | 2 x− 4 |and
y 2 =6. Examine the figure below and note
that 3| 2 x− 4 |>6 whenx<1orx>3.
Thus, the solution in interval notation is
(−∞,1)∪(3,∞).
[−3, 7] by [−3, 10]
Sincef(x)=x^2 +1,f(3)=10 and
f(3+h)=(3+h)^2 + 1 = 9 + 6 h+h^2 + 1 =
10 + 6 h+h^2.
The quotient
f(3+h)−f(3)
h
10 + 6 h+h^2 − 10
h
=
6 h+h^2
h
= 6 +h.
- Simplify the equation 4 lnx− 2 =6 and
obtain lnx=2. (Note thatexand lnxare
inverse functions.) Thus,elnx=e^2 orx=e^2. - Sinceg(x)= 2 x−2,g(2)=2(2)− 2 =2.
Therefore, f(g(2))=f(2). Alsof(x)=x^3 −8.
Thus,f(2)= 23 − 8 =0.
Chapter 6
- See the figure below.
Ifb=2, thenx=−1 would be a solution for
f(x)=2.
Ifb=0, or−2, f(x)=2 would have two
solutions.
Thus,b=3, choice (A).
− 2
− 1
− 2 − 1 0
1
4
2
3
(−2, 4) (0, 4)
y
x
y = 2
- xlim→−∞
√
x^2 − 4
2 x
=xlim→−∞
√
x^2 − 4
/
(−
√
x^2 )
2 x
/
(−
√
x^2 )
(Note: asx→−∞,x=−
√
x^2 .)
=x→lim−∞
−
√
(x^2 −4)
/
x^2
2
=x→lim−∞
−
√
1 −(4/x^2 )
2
=−
√
1
2
=−
1
2
- h(x)=
{√
x ifx> 4
x^2 −12 ifx≤ 4
xlim→ 4 +h(x)=xlim→ 4 +
√
x=
√
4 = 2
lim
x→ 4 −
h(x)=lim
x→ 4 −
(x^2 −12)=(4^2 −12)= 4
Since limx→ 4 +h(x) =xlim→ 4 −h(x), thus limx→ 4 h(x)
does not exist.