5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 12:11

26 STEP 2. Determine Your Test Readiness

3.4 Solutions to Diagnostic Test


Chapter 5



  1. Write 5x− 2 y=10 in slope-intercept form
    y=mx+band obtainy=


5


2


x−5. The slope

of the liney=

5


2


x−5is

5


2


. Therefore, the


slope of the line perpendicular toy=

5


2


x− 5

is−

2


5


. Since the line perpendicular to


y=

5


2


x−5 also passes through the origin, its

y-intercept is 0 and its equation isy =−

2


5


x.


  1. Using your calculator, sety 1 = 3 | 2 x− 4 |and
    y 2 =6. Examine the figure below and note
    that 3| 2 x− 4 |>6 whenx<1orx>3.
    Thus, the solution in interval notation is
    (−∞,1)∪(3,∞).


[−3, 7] by [−3, 10]



  1. Sincef(x)=x^2 +1,f(3)=10 and
    f(3+h)=(3+h)^2 + 1 = 9 + 6 h+h^2 + 1 =
    10 + 6 h+h^2.
    The quotient
    f(3+h)−f(3)
    h


    10 + 6 h+h^2 − 10
    h




=


6 h+h^2
h
= 6 +h.


  1. Simplify the equation 4 lnx− 2 =6 and
    obtain lnx=2. (Note thatexand lnxare
    inverse functions.) Thus,elnx=e^2 orx=e^2.

  2. Sinceg(x)= 2 x−2,g(2)=2(2)− 2 =2.
    Therefore, f(g(2))=f(2). Alsof(x)=x^3 −8.
    Thus,f(2)= 23 − 8 =0.


Chapter 6


  1. See the figure below.
    Ifb=2, thenx=−1 would be a solution for
    f(x)=2.
    Ifb=0, or−2, f(x)=2 would have two
    solutions.
    Thus,b=3, choice (A).


− 2

− 1

− 2 − 1 0

1

4

2

3

(−2, 4) (0, 4)

y

x

y = 2


  1. xlim→−∞



x^2 − 4
2 x
=xlim→−∞


x^2 − 4

/
(−


x^2 )
2 x

/
(−


x^2 )
(Note: asx→−∞,x=−


x^2 .)

=x→lim−∞



(x^2 −4)

/
x^2
2

=x→lim−∞



1 −(4/x^2 )
2

=−


1
2

=−


1


2



  1. h(x)=


{√
x ifx> 4
x^2 −12 ifx≤ 4

xlim→ 4 +h(x)=xlim→ 4 +


x=


4 = 2
lim
x→ 4 −
h(x)=lim
x→ 4 −
(x^2 −12)=(4^2 −12)= 4
Since limx→ 4 +h(x) =xlim→ 4 −h(x), thus limx→ 4 h(x)
does not exist.
Free download pdf