MA 3972-MA-Book April 11, 2018 12:11
30 STEP 2. Determine Your Test Readiness
- f
(
π
2
)
= 3 ⇒
(
π
2
,3
)
is on the graph.
f′
(
π
2
)
=− 1 ⇒slope of the tangent atx=
π
2
is− 1.
Equation of tangent line:y− 3 =
− 1
(
x−
π
2
)
ory=−x+
π
2
+ 3.
Thus, f
(
π
2
+
π
180
)
≈−
(
π
2
+
π
180
)
+
π
2
+ 3
≈ 3 −
π
180
≈ 2. 98255
≈ 2. 983.
Chapter 11
29.
∫
1 −x^2
x^2
dx=
∫ (
1
x^2
−
x^2
x^2
)
dx
=
∫ (
1
x^2
− 1
)
dx
=
∫
(x−^2 −1)dx=
x−^1
− 1
−x+C
=−
1
x
−x+C
KEY IDEA You can check the answer by
differentiating your result.
- Letu=ex+1;du=exdx.
f(x)=
∫
ex
ex+ 1
dx=
∫
1
u
du
=ln|u|+C=ln|ex+ 1 |+C
f(0)=ln|e^0 + 1 |+C=ln (2)+C
Sincef(0)=ln 2⇒ln (2)+C=ln 2
⇒C= 0.
Thus, f(x)=ln (ex+1) andf(ln 2)
=ln (eln 2+1)=ln (2+1)
=ln 3.
- See the figure below.
To find the points of intersection, set
sin 2x=
1
2
⇒ 2 x=sin−^1
(
1
2
)
⇒ 2 x=
π
6
or 2x=
5 π
6
⇒x=
π
12
orx=
5 π
12
.
Volume of solid
=π
∫ 5 π/ 12
π/ 12
[
(sin 2x)^2 −
(
1
2
) 2 ]
dx.
Using your calculator, you obtain:
Volume of solid≈(0.478306)π
≈ 1. 50264 ≈ 1. 503.
Chapter 12
32.
∫ 4
1
1
√
x
dx=
∫ 4
1
x−^1 /^2 dx=
x^1 /^2
1 / 2
] 4
1
= 2 x^1 /^2
] 4
1
=2(4)^1 /^2 −2(1)^1 /^2 = 4 − 2 = 2
33.
∫k
− 1
(2x−3)dx=x^2 − 3 x
]k
− 1
=(k^2 − 3 k)−((−1)^2
−3(−1))
=k^2 − 3 k−(1+3)
=k^2 − 3 k− 4
Setk^2 − 3 k− 4 = 6 ⇒k^2 − 3 k− 10 = 0
⇒(k−5)(k+2)= 0 ⇒k=5ork=− 2.