5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book April 11, 2018 12:11

32 STEP 2. Determine Your Test Readiness


40.

∫ 5

− 1

f(x)dx=

∫ 1

− 1

f(x)dx+

∫ 5

1

f(x)dx

=−


1


2


(2)(1)+


1


2


(2+4)(1)


=− 1 + 3 = 2



  1. To find points of intersection, set
    y=x^2 −x= 0
    ⇒x(x−1)= 0 ⇒x=0orx=1.
    See the figure below.


(^01)
y
x
y = x^2 −x
Area=

∣∣

∫ 1
0
(
x^2 −x
)
dx

∣∣
∣=
∣∣
∣∣

x^3
3



x^2
2

] 1

0

∣∣
∣∣

=


∣∣
∣∣

(
1
3


1


2


)
− 0

∣∣
∣∣=

∣∣
∣∣−^1
6

∣∣
∣∣

=


1


6


42.


∫k

−k

f(x)dx= 0 ⇒ f(x) is an odd function,
i.e., f(x)=−f(−x). Thus, the graph in choice
(D) is the only odd function.


  1. Area=


∫k

1


xdx=

∫k

1

x^1 /^2 dx

=


[
x^3 /^2
3 / 2

]k

1

=

[
2
3
x^3 /^2

]k

1

=


2


3


k^3 /^2 −

2


3


(1)^3 /^2


=


2


3


k^3 /^2 −

2


3


=


2


3


(k^3 /^2 −1)

Since A=8, set

2


3


(k^3 /^2 −1)= 8 ⇒k^3 /^2 − 1
= 12 ⇒k^3 /^2 =13 ork= 132 /^3.


  1. See the figure below.


Using the [Intersection] function of the
calculator, you obtain the intersection
points atx= 0 .785398, 3.92699, and
7.06858.

Area=

∫ 3. 92699

0. 785398

(sinx−cosx)dx

+


∫ 7. 06858

3. 92699

(cosx−sinx)dx

= 2. 82843 + 2. 82843 ≈ 5. 65685
≈ 5. 657

You can also find the area by:

Area=

∫ 7. 06858

. 785398


∣∣
sinx−cosx

∣∣
dx

≈ 5. 65685 ≈ 5. 657
Free download pdf