5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 8, 2018 13:46

Review of Precalculus 59

(d) (f−g)(1)
(e) (fg)(2)


(f)

(
f
g

)
(0)

(g)

(
f
g

)
(5)

(h)


(
g
f

)
(4)

Solutions
(a) (f◦g)(x)= f(g(x))= f(x−5)=(x−5)^2 − 4 =x^2 − 10 x+21.
Thus (f◦g)(−1)=(−1)^2 −10(−1)+ 21 = 1 + 10 + 21 =32.
Or (f ◦g)(−1)=f(g(−1))= f(−6)=32.
(b) (g◦f)(x)=g(f(x))=g(x^2 −4)=(x^2 −4)− 5 =x^2 −9.
Thus (g◦f)(−1)=(−1)^2 − 9 = 1 − 9 =−8.
(c) (f+g)(x)=(x^2 −4)+(x−5)=x^2 +x−9. Thus (f +g)(−3)=−3.
(d) (f−g)(x)=(x^2 −4)−(x−5)=x^2 −x+1. Thus (f −g)(1)=1.
(e) (fg)(x)=(x^2 −4)(x−5)=x^3 − 5 x^2 − 4 x+20. Thus (fg)(2)=0.
(f)


(
f
g

)
(x)=
x^2 − 4
x− 5
,x =5. Thus

(
f
g

)
(0)=

4


5


.


(g) Sinceg(5)=0,x=5isnotin the domain of

(
f
g

)
and

(
f
g

)
(5) isundefined.

(h)


(
g
f

)
(x)=
x− 5
x^2 − 4
,x =2or−2. Thus

(
g
f

)
(4)=−

1


12


.


Example 2
Givenh(x)=


xandk(x)=


9 −x^2 :

(a) find

(
h
k

)
(x) and indicate its domain and

(b) find


(
k
h

)
(x) and indicate its domain.

Solutions

(a)

(
h
k

)
(x)=


x

9 −x^2
The domain ofh(x)is[0,∞), and the domain ofk(x)is[−3, 3].
The intersection of the two domains is [0, 3]. However,k(3)=0.
Therefore, the domain of

(
h
k

)
is [0, 3).

Note that


x

9 −x^2

is not equivalent to


x
9 −x^2
outside of the domain [0, 3).

(b)


(
k
h

)
(x)=


9 −x^2

x
The intersection of the two domains is [0, 3]. However,h(0)=0.
Therefore, the domain of

(
k
h

)
is (0, 3].
Free download pdf