MA 3972-MA-Book May 8, 2018 13:46
Review of Precalculus 59
(d) (f−g)(1)
(e) (fg)(2)
(f)
(
f
g
)
(0)
(g)
(
f
g
)
(5)
(h)
(
g
f
)
(4)
Solutions
(a) (f◦g)(x)= f(g(x))= f(x−5)=(x−5)^2 − 4 =x^2 − 10 x+21.
Thus (f◦g)(−1)=(−1)^2 −10(−1)+ 21 = 1 + 10 + 21 =32.
Or (f ◦g)(−1)=f(g(−1))= f(−6)=32.
(b) (g◦f)(x)=g(f(x))=g(x^2 −4)=(x^2 −4)− 5 =x^2 −9.
Thus (g◦f)(−1)=(−1)^2 − 9 = 1 − 9 =−8.
(c) (f+g)(x)=(x^2 −4)+(x−5)=x^2 +x−9. Thus (f +g)(−3)=−3.
(d) (f−g)(x)=(x^2 −4)−(x−5)=x^2 −x+1. Thus (f −g)(1)=1.
(e) (fg)(x)=(x^2 −4)(x−5)=x^3 − 5 x^2 − 4 x+20. Thus (fg)(2)=0.
(f)
(
f
g
)
(x)=
x^2 − 4
x− 5
,x =5. Thus
(
f
g
)
(0)=
4
5
.
(g) Sinceg(5)=0,x=5isnotin the domain of
(
f
g
)
and
(
f
g
)
(5) isundefined.
(h)
(
g
f
)
(x)=
x− 5
x^2 − 4
,x =2or−2. Thus
(
g
f
)
(4)=−
1
12
.
Example 2
Givenh(x)=
√
xandk(x)=
√
9 −x^2 :
(a) find
(
h
k
)
(x) and indicate its domain and
(b) find
(
k
h
)
(x) and indicate its domain.
Solutions
(a)
(
h
k
)
(x)=
√
x
√
9 −x^2
The domain ofh(x)is[0,∞), and the domain ofk(x)is[−3, 3].
The intersection of the two domains is [0, 3]. However,k(3)=0.
Therefore, the domain of
(
h
k
)
is [0, 3).
Note that
√
x
√
9 −x^2
is not equivalent to
√
x
9 −x^2
outside of the domain [0, 3).
(b)
(
k
h
)
(x)=
√
9 −x^2
√
x
The intersection of the two domains is [0, 3]. However,h(0)=0.
Therefore, the domain of
(
k
h
)
is (0, 3].