MA 3972-MA-Book May 8, 2018 13:46
Review of Precalculus 63
- Solve fory.Thus,y=
x^2 + 1
2
.
- Replaceybyf−^1 (x). You have f−^1 (x)=
x^2 + 1
2
.
- Since the range off(x)is[0,∞), the domain of f−^1 (x)is[0,∞).
- Verifyf−^1 (x) by checking:
Sincex>0,
√
x^2 =x,
f(f−^1 (x))=f
(
x^2 + 1
2
)
=
√
2
(
x^2 + 1
2
)
− 1 =x
f−^1 (f(x))=f−^1 (
√
2 x−1)=
(
√
2 x−1)^2 + 1
2
=x
Trigonometric and Inverse Trigonometric Functions
There are six basic trigonometric functions and six inverse trigonometric functions. Their
graphs are illustrated in Figures 5.3-9 to 5.3-20.
− 2
− 1
0
y = sin x
Domain: {−∞ < x < ∞}
Range: {− 1 ≤ y ≤ 1}
Frequency: 1
Amplitude: 1
Period: 2π
x
y
− 2 π −1. 5π− 1 π −0.5π 0.5π 1 π 1. 5π 2 π
1
2
Figure 5.3-9
x
y
1 2
y = sin−^1 x
− 2 − 1 0
0.5π
−0.5π
Domain: {− 1 ≤ x ≤ 1}
Range: {− 2 π ≤ y ≤ 2 π}
Figure 5.3-10
− 2
− 1
0
y = cos x
x
y
− 2 π−1. 5π − 1 π −0.5π 0.5π 1 π 1. 5π 2 π
1
2
Domain: {−∞ < x < ∞}
Range: {− 1 ≤ y ≤ 1}
Frequency: 1
Amplitude: 1
Period: 2π
Figure 5.3-11
x
y
1 2
y = cos–^1 x
- 2 – 1 0
π
0.5π
Domain: {– 1 ≤ x ≤ 1}
Range: {0 ≤ y ≤ π}
Figure 5.3-12