5 Steps to a 5 AP Calculus AB 2019 - William Ma

(Marvins-Underground-K-12) #1
MA 3972-MA-Book May 8, 2018 13:46

Review of Precalculus 63


  1. Solve fory.Thus,y=
    x^2 + 1
    2


.



  1. Replaceybyf−^1 (x). You have f−^1 (x)=
    x^2 + 1
    2


.



  1. Since the range off(x)is[0,∞), the domain of f−^1 (x)is[0,∞).

  2. Verifyf−^1 (x) by checking:
    Sincex>0,



x^2 =x,

f(f−^1 (x))=f

(
x^2 + 1
2

)
=


2

(
x^2 + 1
2

)
− 1 =x

f−^1 (f(x))=f−^1 (


2 x−1)=

(



2 x−1)^2 + 1
2
=x

Trigonometric and Inverse Trigonometric Functions
There are six basic trigonometric functions and six inverse trigonometric functions. Their
graphs are illustrated in Figures 5.3-9 to 5.3-20.

− 2

− 1

0

y = sin x

Domain: {−∞ < x < ∞}
Range: {− 1 ≤ y ≤ 1}
Frequency: 1

Amplitude: 1
Period: 2π

x

y

− 2 π −1. 5π− 1 π −0.5π 0.5π 1 π 1. 5π 2 π

1

2

Figure 5.3-9

x

y

1 2

y = sin−^1 x

− 2 − 1 0

0.5π

−0.5π
Domain: {− 1 ≤ x ≤ 1}
Range: {− 2 π ≤ y ≤ 2 π}
Figure 5.3-10

− 2

− 1

0

y = cos x

x

y

− 2 π−1. 5π − 1 π −0.5π 0.5π 1 π 1. 5π 2 π


1

2

Domain: {−∞ < x < ∞}
Range: {− 1 ≤ y ≤ 1}
Frequency: 1

Amplitude: 1
Period: 2π

Figure 5.3-11

x

y

1 2

y = cos–^1 x


  • 2 – 1 0


π

0.5π

Domain: {– 1 ≤ x ≤ 1}
Range: {0 ≤ y ≤ π}
Figure 5.3-12
Free download pdf