MA 3972-MA-Book May 8, 2018 13:46
68 STEP 4. Review the Knowledge You Need to Score High
Properties of Logarithms
Given thatx,y, andaare positive numbers witha=1 andnis a real number, then
loga(xy)=logax+logay
loga
(
x
y
)
=logax−logay
logaxn=nlogax
Note that loga 1 =0, logaa=1, and logaax=x.
The Natural Basee
e≈ 2. 71828182846 ...
The expression
(
1 +
1
x
)x
approaches the number e as x gets larger and larger. An
equivalent expression is (1+h)^1 /h. The expression (1+h)^1 /halso approacheseashapproaches 0.
Exponential Function with Basee:f(x)=ex
The Natural Logarithmic Function:f(x)=lnx=logexwherex>0.
Note thaty=exandy=lnxare inverse functions:elnx=lnex=x. Also note thate^0 =1,
ln 1=0, and lne=1. (See Figure 5.3-26.)
y
x
(0, 1)
(1, 0)
(e, 1)
(1, e)
0
y = ln x
y = ex
y = x
Figure 5.3-26
Properties of the Natural Logarithmic and Exponential Functions
Givenxandyare real numbers, then
ex·ey=ex+y
ex÷ey=ex−y
(ex)y=exy
lnxy=lnx+lny
ln
(
x
y
)
=lnx−lny
lnxn=nlnx