84 STEP 4. Review the Knowledge You Need to Score High
Example 8
Ify=
tanx
1 +tanx
, find
dy
dx.
Using the quotient rule, letu=tanxandv=(1+tanx). Then,dy
dx=
(sec^2 x)(1+tanx)−(sec^2 x)(tanx)
(1+tanx)^2=
sec^2 x+(sec^2 x)(tanx)−(sec^2 x)(tanx)
(1+tanx)^2=
sec^2 x
(1+tanx)^2, which is equivalent to1
(cosx)^21 +(
sinx
cosx) 2=
1
(cosx)^2
(
cosx+sinx
cosx) 2 =1
(cosx+sinx)^2.
Note: For all of the above exercises, you can find the derivatives by using a calculator,
provided that you are permitted to do so.Derivatives of Inverse Trigonometric Functions
Summary of Derivatives of Inverse Trigonometric Functions
Letube a differentiable function ofx, then
d
dx
sin−^1 u=1
√
1 −u^2du
dx
, |u|< 1
d
dx
cos−^1 u=− 1
√
1 −u^2du
dx
,|u|< 1d
dx
tan−^1 u=1
1 +u^2du
dxd
dx
cot−^1 u=− 1
1 +u^2du
dx
d
dxsec−^1 u=1
|u|√
u^2 − 1du
dx, |u|> 1
d
dxcsc−^1 u=− 1
|u|√
u^2 − 1du
dx, |u|> 1.Note that the derivatives of cos−^1 x, cot−^1 x, and csc−^1 xall have a “−1” in their numerators.Example 1
Ify=5 sin−^1 (3x), find
dy
dx.
Letu= 3 x. Then
dy
dx=(5)
1
√
1 −(3x)^2du
dx=
5
√
1 −(3x)^2(3)=
15
√
1 − 9 x^2.
Or using a calculator, enterd[5 sin−^1 (3x), x] and obtain the same result.