Differentiation 85Example 2
Findf′(x)iff(x)=tan−^1
√
x.Letu=
√
x.Then f′(x)=1
1 +(
√
x)^2du
dx=
1
1 +x(
1
2
x−(^12)
)
1
1 +x(
1
2√
x)=
1
2
√
x(1+x).
Example 3
Ify=sec−^1 (3x^2 ), find
dy
dx
.
Letu= 3 x^2. Then
dy
dx
=
1
| 3 x^2 |√
(3x^2 )^2 − 1du
dx=
1
3 x^2√
9 x^4 − 1(6x)=2
x√
9 x^4 − 1.
Example 4
Ify=cos−^1
(
1
x)
, find
dy
dx.
Letu=
(
1
x). Then
dy
dx
=
− 1
√
1 −(
1
x) 2du
dx.
Rewriteu=
(
1
x)
asu=x−^1. Then
du
dx
=− 1 x−^2 =− 1
x^2.
Therefore,
dy
dx=
− 1
√
1 −(
1
x) 2du
dx=
− 1
√
1 −(
1
x) 2− 1
x^2=
1
√
x^2 − 1
x^2
(x^2 )=
1
√
x^2 − 1
|x|
(x^2 )=
1
|x|√
x^2 − 1.
Note: For all of the above exercises, you can find the derivatives by using a calculator,
provided that you are permitted to do so.
Derivatives of Exponential and Logarithmic Functions
Summary of Derivatives of Exponential and Logarithmic Functions
Letube a differentiable function ofx, then
d
dx
(eu)=eu
du
dxd
dx
(au)=aulna
du
dx
, a>0&a/= 1d
dx
(lnu)=1
udu
dx
, u> 0
d
dx
(logau)=1
ulnadu
dx
, a>0&a=/ 1.For the following examples, find
dy
dx
and verify your result with a calculator.