92 STEP 4. Review the Knowledge You Need to Score High
[−2,4] by [−2,4]
Figure 6.4-2TIP • Remember that the lim
x→ 0sin 6x
sin 2x=
6
2
=3 because the limx→ 0
sinx
x=1.
6.5 Derivatives of Inverse Functions
Let f be a one-to-one differentiable function with inverse function f−^1 .If
f′(f−^1 (a))/=0, then the inverse function f−^1 is differentiable ata and (f−^1 )′(a) =
1
f′(f−^1 (a)). (See Figure 6.5-1.)
f' (f–1(a))1(a, f–1(a))yx
0y=xff–1(f–1(a),a)
m=(f–1)'(a)
m=f'(f–1(a))(f–1)' (a) =
Figure 6.5-1Ify=f−^1 (x) so thatx=f(y), then
dy
dx=
1
dx/dy
with
dx
dy=/0.
Example 1
Iff(x)=x^3 + 2 x−10, find (f−^1 )′(x).
Step 1: Check if (f−^1 )′(x) exists. f′(x)= 3 x^2 +2 and f′(x) > 0 for all real values
ofx. Thus,f(x) is strictly increasing, which implies thatf(x)is1−1. Therefore,
(f−^1 )′(x) exists.
Step 2: Lety=f(x) and thusy=x^3 + 2 x−10.
Step 3: Interchangexandyto obtain the inverse functionx=y^3 + 2 y−10.
Step 4: Differentiate with respect toy:
dx
dy
= 3 y^2 + 2.Step 5: Apply formula
dy
dx=
1
dx/dy.
dy
dx=
1
dx/dy=
1
3 y^2 + 2.Thus, (f−^1 )′(x)=1
3 y^2 + 2