96 STEP 4. Review the Knowledge You Need to Score High
- Findf′(x)iff(x)=ln(3x).
Answer: f′(x)=1
3 x(3)=
1
x.
- Find the approximate value of f′(3). (See Figure 6.7-1.)
yxf(4,3)(2,1)
0Figure 6.7-1
Answer: Using the slope of the line segment joining (2, 1) and (4, 3),
f′(3)=3 − 1
4 − 2
=1.
- Find
dy
dx
ifxy= 5 x^2.Answer: Using implicit differentiation, 1y+x
dy
dx
= 10 x. Thus,
dy
dx=
10 x−y
x.
Or simply solve foryleading toy= 5 xand thus,
dy
dx= 5.
- Ify=
5
x^2
, find
d^2 y
dx^2.
Answer: Rewritey= 5 x−^2. Then,
dy
dx=− 10 x−^3 and
d^2 y
dx^2= 30 x−^4 =30
x^4.
- Using a calculator, write an equation of the line tangent to the graphf(x)=
− 2 x^4 at the point where f′(x)=−1.
Answer: f′(x)=− 8 x^3. Using a calculator, enter [Solve](− 8 x∧ 3 =−1,x) and
obtainx=
1
2
⇒ f′(
1
2)
=−1. Using the calculatorf(
1
2)
=−1
8
. Thus,
tangent isy+1
8
=− 1
(
x−1
2
)
.- xlim→ 2
x^2 +x− 6
x^2 − 4
Answer: Since
x^2 +x− 6
x^2 − 4→
0
0
, consider limx→ 22 x+ 1
2 x=
5
4
.
- xlim→∞
lnx
x
Answer: Since
lnx
x
→
∞
∞
, consider limx→∞
1 /x
1
=xlim→∞1
x