Differentiation 99- Rewritey=
√
2 x+ 1
2 x− 1
asy=(
2 x+ 1
2 x− 1) 1 / 2. Applying first the chain
rule and then the quotient rule,
dy
dx
=
1
2
(
2 x+ 1
2 x− 1)− 1 / 2×
[
(2)(2x−1)−(2)(2x+1)
(2x−1)^2]=
1
2
1
(
2 x+ 1
2 x− 1) 1 / 2[
− 4
(2x−1)^2]=
1
2
1
(2x+1)^1 /^2
(2x−1)^1 /^2[
− 4
(2x−1)^2]=
− 2
(2x+1)^1 /^2 (2x−1)^3 /^2.
Note:(
2 x+ 1
2 x− 1) 1 / 2
=
(2x+1)^1 /^2
(2x−1)^1 /^2,
if
2 x+ 1
2 x− 1
>0, which impliesx<−1
2
orx>1
2
.
An alternate method of solution is to writey=√
2 x+ 1
√
2 x− 1and use the quotient rule.Another method is to writey=
(2x+1)^1 /^2 (2x−1)^1 /^2 and use the product
rule.- Letu= 2 x−1,
dy
dx
=10−csc^2 (2x−1)
=−20 csc^2 (2x−1). - Using the product rule,
dy
dx
=(3[sec(3x)])+[sec(3x) tan(3x)](3)[3x]=3 sec(3x)+ 9 xsec(3x) tan(3x)
=3 sec(3x)[1+ 3 xtan(3x)].9.Using the chain rule, letu=sin(x^2 −4).
dy
dx
=10(−sin[sin(x^2 −4)])[cos(x^2 −4)](2x)=− 20 xcos(x^2 −4) sin[sin(x^2 −4)]- Using the chain rule, letu= 2 x.
dy
dx= 8
⎛
⎝√ −^1
1 −(2x)^2⎞
⎠(2)=√−^16
1 − 4 x^2- Since 3e^5 is a constant, its derivative is 0.
dy
dx
= 0 +(4)(ex)+(ex)(4x)
= 4 ex+ 4 xex= 4 ex(1+x)- Letu=(x^2 +3),
dy
dx
=
(
1
x^2 + 3)
(2x)=
2 x
x^2 + 3.
Part B Calculators are allowed.- Using implicit differentiation, differentiate
each term with respect tox.
2 x+ 3 y^2
dy
dx= 0 −
[
(5)(y)+
dy
dx
(5x)]2 x+ 3 y^2
dy
dx
=− 5 y − 5 x
dy
dx3 y^2
dy
dx
+ 5 x
dy
dx
=− 5 y − 2 xdy
dx
=(3y^2 + 5 x)=− 5 y − 2 xdy
dx=
− 5 y − 2 x
3 y^2 + 5 xor
dy
dx=
−(2x+ 5 y)
5 x+ 3 y^2