Differentiation 10118.
dy
dx
=(2)(sinx)+(cosx)(2x)=
2 sinx+ 2 xcosx
d^2 y
dx^2
=2 cosx+[(2)(cosx)+(−sinx)(2x)]=2 cosx+2 cosx− 2 xsinx
=4 cosx− 2 xsinxd^2 y
dx^2∣∣
∣∣
x=π/ 2=4 cos(
π
2)
− 2(
π
2)(
sin(
π
2))= 0 − 2
(
π
2)
(1)=−πOr, using a calculator, enter
d(2x−sin(x),x,2)x=
π
2
and obtain−π.- Entery 1 =(x−1)^2 /^3 +2 in your calculator.
The graph ofy1 forms a cusp atx=1.
Therefore,f is not differentiable atx=1. - Differentiate with respect tox:
(1) cosy+[
(−siny)
dy
dx]
(x)= 0cosy−xsiny
dy
dx= 0
dy
dx=
cosy
xsinydy
dx∣
∣∣
∣x=2,y=π/ 3 =cos(π/ 3 )
(2) sin(π/ 3 )=1 / 2
2
(√
3 / 2)=^1
2√
3.
Thus, the slope of the tangent to the curve
at (2,π/3) ism=1
2
√
3.
The slope of the normal line to the curve
at (2,π/3) ism=−2
√
3
1=− 2
√
3.
Therefore, an equation of the normal line
isy−π/ 3 =− 2√
3(x−2).- limx→ 3
x^2 − 3 x
x^2 − 9
=xlim→ 3
2 x− 3
2 x
=
1
2
- xlim→ 0 +
ln(√x+1)
x
=xlim→ 0 +
1 /(x+1)
1 /(2
√
x)=xlim→ 0 +2
√
x
x+ 1= 0
- limx→ 0
ex− 1
tan 2x
=limx→ 0
ex
2 sec^22 x
=
1
2
- limx→ 0
cos(x)− 1
cos(2x)− 1
=limx→ 0
−sinx
−2 sin(2x)
=limx→ 0
−cosx
−4 cos(2x)=
1
4
- xlim→∞
5 x+2lnx
x+3lnx
=xlim→∞
5 +(2/x)
1 +(3/x)
= 5
6.11 Solutions to Cumulative Review Problems
- The expression
limh→ 0
sin(π/ 2 +h)−sin(π/2)
histhe derivative of sinxatx=π/2, which is
the slope of the tangent to sinxat
x=π/2. The tangent to sinxatx=π/2is
parallel to thex-axis.Therefore, the slope is 0, i.e.,
limh→ 0
sin(π/ 2 +h)−sin(π/2)
h=0.
An alternate method is to expand
sin(π/ 2 +h)as
sin(π/2) cosh+cos(π/2) sinh.