102 STEP 4. Review the Knowledge You Need to Score High
Thus, limh→ 0
sin(π/ 2 +h)−sin(π/2)
h=
limh→ 0
sin(π/2) cosh+cos(π/2) sinh−sin(π/2)
h=limh→ 0sin(π/2)[cosh−1]+cos(π/2) sinh
h=limh→ 0 sin(
π
2)(
cosh− 1
h)−limh→ 0 cos(
π
2)(
sinh
h)=sin(
π
2)
limh→ 0(
cosh− 1
h)−cos(
π
2)
hlim→ 0(
sinh
h)=
[
sin(
π
2)]
0 +cos(
π
2)
(1)=cos(
π
2)
= 0.- Using the chain rule, letu=(π−x).
Then, f′(x)=2 cos(π−x)−sin(π−x)
=2 cos(π−x) sin(π−x)
f′(0)=2 cosπsinπ= 0. - Since the degree of the polynomial in the
denominator is greater than the degree of
the polynomial in the numerator, the limit
is 0. - You can use the difference quotient
f(a+h)−f(a)
h
to approximate f′(a).
Leth=1; f′(2)≈
f(3)−f(2)
3 − 2≈6. 5 − 4. 8
1
≈ 1. 7.
Leth=2; f′(2)≈
f(4)−f(2)
4 − 2≈8. 9 − 4. 8
2
≈ 2. 05.
Or, you can use the symmetric differencequotient
f(a+h)−f(a−h)
2 h
to
approximate f′(a).Leth=1; f′(2)≈f(3)− f(1)
3 − 1≈6. 5 − 4
2
≈ 1. 25.
Leth=2; f′(2)≈
f(4)− f(0)
4 − 0≈8. 9 − 3. 9
4
≈ 1. 25.
Thus,f′(2)= 1 .7, 2.05, or 1.25
depending on your method.- (See Figure 6.11-1.) Checking the three
conditions of continuity:
[−10,10] by [−10,10]
Figure 6.11-1(1) f(3)= 3
(2) lim
x→ 3x^2 − 9
x− 3
=limx→ 3(
(x+3)(x−3)
(x−3))=limx→ 3 (x+3)=(3)+ 3 = 6(3) Sincef(3)/=limx→ 3 f(x), f(x)is
discontinuous atx=3.