5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Graphs of Functions and Derivatives 147

7.10 Solutions to Cumulative Review Problems



  1. (x^2 +y^2 )^2 = 10 xy


2

(
x^2 +y^2

)
(
2 x+ 2 y
dy
dx

)

= 10 y+( 10 x)
dy
dx
4 x

(
x^2 +y^2

)
+ 4 y

(
x^2 +y^2

)dy
dx
= 10 y+( 10 x)
dy
dx
4 y

(
x^2 +y^2

)dy
dx
−( 10 x)
dy
dx
= 10 y− 4 x

(
x^2 +y^2

)

dy
dx

(
4 y

(
x^2 +y^2

)
− 10 x

)

= 10 y− 4 x

(
x^2 +y^2

)

dy
dx

=


10 y− 4 x

(
x^2 +y^2

)

4 y(x^2 +y^2 )− 10 x

=

5 y− 2 x

(
x^2 +y^2

)

2 y(x^2 +y^2 )− 5 x


  1. Substituting√ x=0 in the expression
    x+ 9 − 3
    x
    leads to


0


0


, an indeterminate
form. ApplyL’Hoˆpital’sRule and you

have limx→ 0

1


2


(x+9)−

(^12)
(1)
1
or


1


2


(0+9)−


(^12)


1


6


.


Alternatively,
limx→ 0


x+ 9 − 3
x

=limx→ 0

(√
x+ 9 − 3

)

x

·


(√
x+ 9 + 3

)

(√
x+ 9 + 3

)

=limx→ 0
(x+ 9 )− 9
x

(√
x+ 9 + 3

)

=limx→ 0
x
x

(√
x+ 9 + 3

)

=limx→ 0

1



x+ 9 + 3

=


1



0 + 9 + 3
=

1


3 + 3


=


1


6



  1. y=cos(2x)+ 3 x^2 − 1
    dy
    dx
    =−sin(2x)+ 6 x=
    −2 sin(2x)+ 6 x
    d^2 y
    dx^2
    =−2(cos(2x))(2)+ 6 =
    −4 cos(2x)+ 6

  2. (Calculator) The functionf is continuous
    everywhere for all values ofkexcept
    possibly atx=1. Checking with the three
    conditions of continuity atx=1:


(1) f(1)=(1)^2 − 1 = 0
(2) xlim→ 1 +(2x+k)= 2 +k, limx→ 1 −

(
x^2 − 1

)
=0;
thus, 2+k= 0 ⇒k=−2. Since
xlim→ 1 +f(x)=xlim→ 1 −f(x)=0, therefore,
limx→ 1 f(x)=0.
(3) f(1)=limx→ 1 f(x)=0. Thus,k=−2.


  1. (a) Sincef′>0on(−1, 0) and (0, 2),
    the functionfis increasing on the
    intervals [−1, 0] and [0, 2]. Since
    f′<0 on (2, 4), f is decreasing on
    [2, 4].
    (b) The absolute maximum occurs at
    x=2, since it is a relative maximum
    and it is the only relative extremum on
    (−1, 4). The absolute minimum occurs
    atx=−1, sincef(−1)< f(4) and the
    function has no relative minimum on
    [−1, 4].
    (c) A change of concavity occurs atx=0.
    However,f′(0) is undefined, which
    impliesfmay or may not have a
    tangent atx=0. Thus,f may or may
    not have a point of inflection atx=0.
    (d) Concave upward on (−1, 0) and
    concave downward on (0, 4).

Free download pdf