170 STEP 4. Review the Knowledge You Need to Score High
Step 2: Enter:y 1 =2500
x
+. 02 +. 004 ∗xStep 3: Use the [Minimum] function in
the calculator and obtainx= 790 .6.Step 4: Verify the result with the First
Derivative Test. Entery 2 =
d(2500/x+. 02 +. 004 x,x).
Use the [Zero] function andobtainx= 790 .6. Thus,
dC
dx=0,
atx= 790 .6.
Apply the First Derivative Test:
f ′ –0 +f decr
rel. minincr0 790.6Thus, the minimum average cost
per unit occurs atx= 790 .6. (The
graph of the average cost function
is shown in Figure 8.6-10.)Figure 8.6-10- (See Figure 8.6-11.)
(x,y)y2–2–5 x 5 xyFigure 8.6-11Step 1: AreaA=(2x)(2y); 0≤x≤5 and
0 ≤y≤ 2.
Step 2: 4 x^2 + 25 y^2 =100;
25 y^2 = 100 − 4 x^2.y^2 =
100 − 4 x^2
25
⇒y=±√
100 − 4 x^2
25Sincey≥0,y=√
100 − 4 x^2
25=
√
100 − 4 x^2
5.
Step 3: A=(2x)(
2
5)(√
100 − 4 x^2)=
4 x
5√
100 − 4 x^2Step 4: Entery 1 =
4 x
5√
100 − 4 x^2.
Use the [Maximum] function and
obtainx= 3 .536 andy 1 =20.Step 5: Verify the result with the First
Derivative Test.
Entery 2 =d(
4 x
5√
100 − 4 x^2 ,x)
.Use the [Zero] function and
obtainx= 3 .536.
Note that:f′f incr
rel. maxdecr0 3.536+– 0The functionfhas only one
relative extremum. Thus, it is the
absolute extremum. Therefore, at
x= 3 .536, the area is 20 and the
area is the absolute maxima.