Definite Integrals 239Example 1
Evaluate
∫ππ/ 4cos(2t)dt.Letu= 2 t;du= 2 dtor
du
2
=dt.
∫
cos(2t)dt=∫
cosu
du
2=
1
2
∫
cosudu=
1
2
sinu+C=1
2
sin(2t)+C
∫xπ/ 4cos(2t)dt=1
2
sin( 2 t)]x
π/ 4=
1
2
sin(2x)−1
2
sin(
2(
π
4))=
1
2
sin(2x)−1
2
sin(
π
2)=
1
2
sin(2x)−1
2
Example 2
Ifh(x)=
∫ x3√
t+ 1 dtfindh′(8).h′(x)=√
x+1;h′(8)=√
8 + 1 = 3Example 3
Find
dy
dx
;ify=
∫ 2 x11
t^3
dt.Letu= 2 x; then
dy
dx
= 2.
Rewrite:y=
∫u11
t^3
dt.dy
dx=
dy
du·
du
dx=
1
u^3·(2)=
1
(2x)^3· 2 =
1
4 x^3Example 4
Find
dy
dx
;ify=∫ 1x^2sintdt.Rewrite:y=−
∫x 21sintdt.