Areas, Volumes, and Arc Lengths 273Example 1
Find the area of the regions bounded by the graphs of f(x)=x^3 andg(x)=x. (See
Figure 12.3-9.)
–1 0 1(–1,1)(1,1)yxg(x)f(x)Figure 12.3-9Step 1. Sketch the graphs of f(x) andg(x).
Step 2. Find the points of intersection.
Setf(x)=g(x)
x^3 =x
⇒x(x^2 −1)= 0
⇒x(x−1)(x+1)= 0
⇒x=0, 1, and− 1.Step 3. Set up integrals.
Area=∫ 0− 1(f(x)−g(x))dx+∫ 10(g(x)−f(x))dx=
∫ 0− 1(
x^3 −x)
dx+∫ 10(
x−x^3)
dx=
[
x^4
4−
x^2
2] 0− 1+
[
x^2
2−
x^4
4] 10= 0 −
(
(− 1 )^4
4−
(− 1 )^2
2
)
+(
12
2−
14
4
)
− 0=−
(
−1
4
)
+