Areas, Volumes, and Arc Lengths 277Example 1
The base of a solid is the region enclosed by the ellipse
x^2
4
+
y^2
25
=1. The cross sections areperpendicular to thex-axis and are isosceles right triangles whose hypotenuses are on the
ellipse. Find the volume of the solid. (See Figure 12.4-2.)
y
x–2205–5aayx^2 y^2
4 + 25 = 1Figure 12.4-2Step 1. Find the area of a cross sectionA(x).
Pythagorean Theorem:a^2 +a^2 =(2y)^2
2 a^2 = 4 y^2
a=√
2 y, a> 0.A(x)=1
2
a^2 =1
2
(√
2 y) 2
=y^2Sincex^2
4+
y^2
25=1,
y^2
25= 1 −
x^2
4
ory^2 = 25 −25 x^2
4,
A(x)= 25 −
25 x^2
4.
Step 2. Set up an integral.
V=∫ 2− 2(
25 −
25 x^2
4)
dxStep 3. Evaluate the integral.
V=∫ 2− 2(
25 −
25 x^2
4)
dx = 25 x−25
12
x^3] 2− 2=(
25(2)−25
12
(2)^3
)
−(
25(−2)−25
12
(−2)^3
)=
100
3
−
(
−100
3
)
=200
3
The volume of the solid is200
3
.
Verify your result with a graphing calculator.