5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Areas, Volumes, and Arc Lengths 289

12.5 Integration of Parametric, Polar, and Vector Curves


Main Concepts:Area, Arc Length, and Surface Area for Parametric Curves; Area and Arc
Length for Polar Curves; Integration of a Vector-Valued Function

Area, Arc Length, and Surface Area for Parametric Curves
Area for Parametric Curves
For a curve defined parametrically byx=f(t) andy=g(t), the area bounded by the portion
of the curve betweent=αandt=βisA=

∫β

α

g(t)f′(t)dt.

Example 1
Find the area bounded byx=2 sint,y=3 sin^2 t.

Step 1. Determine the limits of integration. The symmetry of the graph allows us to
integrate fromt=0tot=π/2 and multiply by 2.

Step 2. Differentiate
dx
dt
=2 cost.

Step 3. A= 2

∫π/ 2

0

3 sin^2 t(2 cost)dt= 12

∫π/ 2

0

(sin^2 tcost)dt=4 sin^3 t


∣∣π/^2
0

= 4


Arc Length for Parametric Curves

The length of that arc isL=

∫β

α

√(
dx
dt

) 2
+

(
dy
dt

) 2
dt.

Example 2
Find the length of the arc defined byx=etcostandy=etsintfromt=0tot=4.

Step 1. Differentiate
dx
dt
=etcost−etsintand
dy
dt
=etcost+etsint.

Step 2. L=

∫ 4

0


(etcost−etsint)^2 +(etcost+etsint)^2 dt

L=


∫ 4

0


2 e^2 t(cos^2 t+sin^2 t)dt=

∫ 4

0


2 e^2 tdt=


2

∫ 4

0

etdt=


2 et

∣∣

4
0
=


2 e^4 −


2

Surface Area for Parametric Curves
The surface area created when that arc is revolved about thex-axis is

S=


∫β

α

2 πy

√(
dx
dt

) 2
+

(
dy
dt

) 2
dt.
Free download pdf