Areas, Volumes, and Arc Lengths 28912.5 Integration of Parametric, Polar, and Vector Curves
Main Concepts:Area, Arc Length, and Surface Area for Parametric Curves; Area and Arc
Length for Polar Curves; Integration of a Vector-Valued FunctionArea, Arc Length, and Surface Area for Parametric Curves
Area for Parametric Curves
For a curve defined parametrically byx=f(t) andy=g(t), the area bounded by the portion
of the curve betweent=αandt=βisA=∫βαg(t)f′(t)dt.Example 1
Find the area bounded byx=2 sint,y=3 sin^2 t.Step 1. Determine the limits of integration. The symmetry of the graph allows us to
integrate fromt=0tot=π/2 and multiply by 2.Step 2. Differentiate
dx
dt
=2 cost.Step 3. A= 2∫π/ 203 sin^2 t(2 cost)dt= 12∫π/ 20(sin^2 tcost)dt=4 sin^3 t∣
∣∣π/^2
0= 4
Arc Length for Parametric CurvesThe length of that arc isL=∫βα√(
dx
dt) 2
+(
dy
dt) 2
dt.Example 2
Find the length of the arc defined byx=etcostandy=etsintfromt=0tot=4.Step 1. Differentiate
dx
dt
=etcost−etsintand
dy
dt
=etcost+etsint.Step 2. L=∫ 40√
(etcost−etsint)^2 +(etcost+etsint)^2 dtL=
∫ 40√
2 e^2 t(cos^2 t+sin^2 t)dt=∫ 40√
2 e^2 tdt=√
2∫ 40etdt=√
2 et∣∣
∣4
0
=√
2 e^4 −√
2Surface Area for Parametric Curves
The surface area created when that arc is revolved about thex-axis isS=
∫βα2 πy√(
dx
dt) 2
+(
dy
dt) 2
dt.