5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1
Areas, Volumes, and Arc Lengths 291

Example 2


Find the length of the spiralr=eθfromθ=0toθ=π.


Step 1. Differentiate
dr

=eθ.


Step 2. Squarer^2 =e^2 θ.


Step 3. L=


∫π

0


e^2 θ+e^2 θdθ=

∫π

0


2 e^2 θdθ=


2

∫π

0

eθdθ=


2 eθ


∣π 0

=



2 eπ−


2

Integration of a Vector-Valued Function
Integrating a Vector Function
For a vector-valued functionr(t)=



x(t),y(t)


,


r(t)dt=


x(t)dt·i +


y(t)
dt·j.


Example 1


The acceleration vector of a particle at any timet≥0isa(t)=



et,e^2 t


. If at timet=0, its
velocity isi+jand its displacement is 0, find the functions for the position and velocity at
any timet.


Step 1. a(t)=



et,e^2 t


,sov(t)=


a(t)dt=


x(t)dt·i+


y(t)dt·j

v(t)=


etdt·i+


e^2 tdt·j=et·i+

e^2 t
2
·j+C. Since velocity att = 0 is known

to bei + j,i+

1


2


·j+C=i+j, andC=

1


2


·j; therefore,v(t)=et·i+
e^2 t
2
·j+

1
2

·j=


et,
e^2 t+ 1
2


.

Step 2. The position functions(t)=



v(t)dt=


etdt·i+


e^2 t+ 1
2
dt·j.

s(t)=


v(t)dt=


etdt·i+


e^2 t+ 1
2
dt· j=et·i+

(
e^2 t+ 2 t
4

)
·j+C.

Displacement is 0 at t =0,soi +

1


4


·j +C =0 and C =−i −

1


4


·j.

The position functions(t)=et·i+

(
e^2 t+ 2 t
4

)
·j −i−

1


4


·j =(et− 1 )i+
(
e^2 t+ 2 t− 1
4

)
j=


et−1,
e^2 t+ 2 t− 1
4


.

Length of a Vector Curve
The length of a curve defined by the vector-valued functionr(t)=



x(t),y(t)


traced from

t=atot=biss=


∫b

a

∥∥
r′(t)

∥∥
dt.
Free download pdf