More Applications of Definite Integrals 33713.11 Solutions to Practice Problems
Part A The use of a calculator is not
allowed.1.
∫ 42x^3 dx= f(c)(4−2)∫ 42x^3 dx=
x^4
4] 42=
(
44
4)
−(
24
4)
= 602 f(c)= 60 ⇒ f(c)= 30
c^3 = 30 ⇒C= 30 (1/3).- Average Value=
1
8 − 0
∫ 10f(x)dx=
1
8
(
1
2(8)(4)
)
= 2.- Displacement=s(4)−s(1)=− 15 −(−12)=− 3.
Distance Traveled=
∫ 41∣
∣v(t)
∣
∣dt.v(t)=s′(t)= 2 t− 6
Set 2t− 6 = 0 ⇒t= 3
∣∣
2 t− 6∣∣
={
−(2t−6) if 0≤t< 3
2 t−6if3≤t≤ 10
∫ 41|v(t)|dt=∫ 31−(2t−6)dt+∫ 43(2t−6)dt=
[
−t^2 + 6 t] 3
1 +[
t^2 − 6 t] 4
3
= 4 + 1 = 5.- Position Functions(t)=
∫
v(t)dt=∫
(2t+1)dt
=t^2 +t+C
s(1)=− 4 ⇒(1)^2
+ 1 +C
=−4orC=− 6
s(t)=t^2 +t− 6
s(5)= 52 + 5 − 6 = 24.5.Total Loss=∫ 50p(t)dt=
∫ 50(50t−600)dt= 25 t^2 − 600 t] 5
0 =−$2375.6.v(t)=∫
a(t)dt=∫
− 2 dt=− 2 t+C
v 0 = 10 ⇒−2(0)+C=10 orC= 10
v(t)=− 2 t+ 10Distance Traveled=∫ 40∣∣
v(t)∣∣
dt.
Set∣ v(t)= 0 ⇒− 2 t+ 10 =0ort=5.
∣− 2 t+ 10 ∣∣=− 2 t+10 if 0≤t< 5
∫ 40∣∣
v(t)∣∣
dt=∫ 40(− 2 t+10)dt=−t^2 + 10 t] 4
0 =^24
7.Total Distance Traveled=∫ 80∣∣
v(t)∣∣
dt+∣∣
∣∣∫ 128v(t)∣∣
∣∣=
1
2
(8) (10)+
1
2
(4) (10)
=60 meters.8.Total Leakage=∫ 3010 e^0.^2 t= 50 e^0.^2 t] 3
0
= 91. 1059 − 50
= 41. 1059 =41 gallons.
9.Total change in temperature=∫ 50−cos(
t
4)
dt=−4 sin(
t
4)] 50
=− 3. 79594 − 0
=− 3. 79594 ◦F.
Thus, the temperature of coffee after 5
minutes is (92− 3 .79594)≈ 88. 204 ◦F.