350 STEP 4. Review the Knowledge You Need to Score High
14.3 Convergence Tests
Main Concepts:Divergence Test, Integral Test, Ratio Test, Comparison Test, Limit
Comparison Test
Divergence TestGiven a series∑∞
n= 1an, if limn→∞an/=0, then the series diverges.Example
Determine whether the series
∑∞
n= 12 n
3 n+ 1converges or diverges.The series∑∞
n= 12 n
3 n+ 1=
1
2
+
4
7
+
3
5
+.... Applying the Divergence Test, you have limn→∞an=nlim→∞2 n
3 n+ 1=
2
3
/=0.
Therefore, the series diverges.Integral Test
Ifan=f(n) wherefis a continuous, positive, decreasing function on [c,∞), then the series
∑∞
n= 1anis convergent if and only if the improper integral∫∞cf(x)dxexists.Example 1
Determine whether the series∑∞
n= 11
n^2
sin
π
n
converges or diverges.Step 1: f(x)=1
x^2
sin
π
x
is continuous, positive, and decreasing on the interval [2,∞).Step 2:∫∞21
x^2
sin
π
x
dx =1
π
ulim→∞cos(π
x)∣∣
∣∣u2=
1
π
ulim→∞[
cos(π
u)
−cos(
π
2)]
=
1
π
ulim→∞[
cos(π
u)]
=1
π. The improper integral exists, so
∑∞
n= 11
n^2
sin
π
n
converges.Example 2
Determine whether the series 1+1
4
+
1
9
+
1
16
+···+
1
n^2+···=
∑∞n= 11
n^2
converges or diverges.Step 1: f(x)=1
x^2
is continuous, positive, and decreasing on the interval [1,∞).Step 2:∫∞11
x^2
dx=ulim→∞∫u11
x^2
dx=ulim→∞(−x−^1 )∣∣
∣
∣u1=ulim→∞[
− 1
u−
− 1
1
]
=ulim→∞[
1 −1
u]
= 1Since the improper integral exists, the series∑∞
n= 11
n^2
converges.