5 Steps to a 5 AP Calculus BC 2019

(Marvins-Underground-K-12) #1

350 STEP 4. Review the Knowledge You Need to Score High


14.3 Convergence Tests


Main Concepts:Divergence Test, Integral Test, Ratio Test, Comparison Test, Limit
Comparison Test
Divergence Test

Given a series

∑∞
n= 1

an, if limn→∞an/=0, then the series diverges.

Example
Determine whether the series
∑∞
n= 1

2 n
3 n+ 1

converges or diverges.

The series

∑∞
n= 1

2 n
3 n+ 1

=


1


2


+


4


7


+


3


5


+.... Applying the Divergence Test, you have limn→∞an=

nlim→∞

2 n
3 n+ 1

=


2


3


/=0.


Therefore, the series diverges.

Integral Test
Ifan=f(n) wherefis a continuous, positive, decreasing function on [c,∞), then the series
∑∞
n= 1

anis convergent if and only if the improper integral

∫∞

c

f(x)dxexists.

Example 1
Determine whether the series

∑∞
n= 1

1


n^2
sin
π
n
converges or diverges.

Step 1: f(x)=

1


x^2
sin
π
x
is continuous, positive, and decreasing on the interval [2,∞).

Step 2:

∫∞

2

1


x^2
sin
π
x
dx =

1


π
ulim→∞cos


x

)∣∣
∣∣

u

2

=


1


π
ulim→∞

[
cos


u

)
−cos

(
π
2

)]
=
1
π
ulim→∞

[
cos


u

)]
=

1


π

. The improper integral exists, so


∑∞
n= 1

1


n^2
sin
π
n
converges.

Example 2
Determine whether the series 1+

1


4


+


1


9


+


1


16


+···+


1


n^2

+···=


∑∞

n= 1

1


n^2
converges or diverges.

Step 1: f(x)=

1


x^2
is continuous, positive, and decreasing on the interval [1,∞).

Step 2:

∫∞

1

1


x^2
dx=ulim→∞

∫u

1

1


x^2
dx=ulim→∞(−x−^1 )

∣∣


u

1

=ulim→∞

[
− 1
u


− 1


1


]
=

ulim→∞

[
1 −

1


u

]
= 1

Since the improper integral exists, the series

∑∞
n= 1

1


n^2
converges.
Free download pdf