Series 351Example 3
Determine whether the series 1+
1
2
+
1
3
+
1
4
+···+
1
n+···=
∑∞n= 11
n
converges or diverges.Step 1: f(x)=
1
x
is continuous, positive, and decreasing on [1,∞).Step 2:
∫∞11
x
dx=ulim→∞∫u11
x
dx=ulim→∞(lnx)∣∣u
1 =ulim→∞[lnu−ln 1]=∞. Since the im-proper integral does not converge, the series∑∞
n= 11
n
diverges.Example 4
Determine whether the series 1+
1
√
2+
1
√
3+
1
√
4+···+
1
√
n+···=
∑∞n= 11
√
nconverges or diverges.
Step 1: f(x)=
1
√
x
is continuous, positive, and decreasing on [1,∞).Step 2:
∫∞11
√
x
dx=ulim→∞∫u11
√
x
dx=ulim→∞(
2√
x)
|u 1 =ulim→∞[
2√
u− 2]
=∞Since the improper integral does not converge, the series∑∞
n= 11
√
n
diverges.Ratio Test
If
∑∞
n= 1anis a series with positive terms and limn→∞
an+ 1
an
<1, then the series converges. If thelimit is greater than 1 or is∞, the series diverges. If the limit is 1, another test must be used.
Example 1
Determine whether the series
∑∞
n= 1(n+1)· 2 n
n!
converges or diverges.Step 1: For alln≥1,
(n+1)· 2 n
n!
is positive.
Step 2: nlim→∞
an+ 1
an
= nlim→∞(
(n+2)· 2 n+^1
(n+1)!·
n!
(n+1)· 2 n)
= nlim→∞(
(n+2)· 2
(n+1)^2)
= 0Since this limit is less than 1, the series converges.Example 2
Determine whether the series
∑∞
n= 1n^3
(ln 2)n
converges or diverges.Step 1: For alln≥1,
n^3
(ln 2)n
is positive.