Series 353Informal Principle
Given a rational expression containing a polynomial innas a factor in the numerator or
denominator, often you may delete all but the highest power ofnwithout affecting the
convergence or divergence behavior of the series. For example,
∑∞n= 14 n^3 −n+ 1
n^5 + 7 n^2 − 6
behaves like∑∞n= 14 n^3
n^5= 4
∑∞n= 11
n^2When choosing a series for the Limit Comparison Test, it is helpful to apply the Informal
Principle.
Example 1
Determine whether the series 1+
1
5
+
1
9
+
1
13
+···converges or diverges.The given series 1+
1
5
+
1
9
+
1
13
+···=
∑∞n= 11
4 n− 3. Choose
∑∞n= 11
n
for comparison.Since it has a similar structure, and we know it is ap-series withp=1, it diverges. The
nlim→∞
1 /(4n−3)
1 /n
=nlim→∞
n
4 n− 3=
1
4
. The limit exists and is greater than zero; therefore, since
∑∞
n= 11
ndiverges, 1+1
5
+
1
9
+
1
13
+···=
∑∞n= 11
4 n− 3also diverges.Example 2
Determine whether the series
∑∞
n= 1
n− 2
n^3converges or diverges.Compare to the known convergent p-series
∑∞
n= 11
n^2. The limit limn→∞
(n−2)/n^3
1 /n^2
=
nlim→∞
(n−2)(n^2 )
(n^3 )
=nlim→∞
n− 2
n
=1. Since 0<nlim→∞
(n−2)/n^3
1 /n^2
<∞and∑∞
n= 11
n^2
converges,∑∞
n= 1
n− 2
n^3also converges.Example 3
Determine whether the series
∑∞
n= 11
√
n^3 − 3 nconverges or diverges. Using the informal prin-ciple, you have
∑∞
n= 11
√
n^3or∑∞
n= 11
n^3 /^2. (Note that
∑∞
n= 11
n^3 /^2
is ap-serieswithp>1 and thereforeit converges.)
Apply the limit comparison test and obtain limn→∞
1
n^3 /^2
1
√
n^3 − 3 n= nlim→∞√
n^3 − 3 n
n^3 /^2=
nlim→∞
√
n^3 − 3 n
n^3 /^2
=nlim→∞√
1 −3
n^2
=1. Since 0 < nlim→∞1
n^3 /^2
1
√
n^3 − 3 n< ∞, and∑∞
n= 11
n^3 /^2converges, the series
∑∞
n= 11
√
n^3 − 3 nconverges.