364 STEP 4. Review the Knowledge You Need to Score High
∑∞n= 11
√
n, which is ap-series withp=1
2
, and therefore diverges. Thus, the interval ofconvergence is [−2, 0).- Approximate the functionf(x)=
1
x+ 2
with a fourth degree Taylor polynomial
centered atx=3.Answer: f(3)=1
5
,f′(x)=− 1
(x+2)^2
⇒f′(3)=− 1
25
,
f′′(x)=2
(x+2)^3
⇒f′′(3)=2
125
,f′′′(x)=− 6
(x+2)^4
⇒ f′′′(3)=− 6
625
,
f(4)(x)=24
(x+2)^5
⇒ f(4)(3)=24
3125
,soP(x)=1 / 5
0!
(x−3)^0 +− 1 / 25
1!
(x−3)^1 +2 / 125
2!
(x−3)^2+
− 6 / 625
3!
(x−3)^3 +24 / 3125
4!
(x−3)^4=
1
5
−
x− 3
25+
(x−3)^2
125−
(x−3)^3
625+
(x−3)^4
3125.
- Find the MacLaurin series for the functionf(x)=e−xand determine its interval of
convergence.
Answer:Sinceex=∑xn
n!
, substitute−xto finde−x=∑(−x)n
n!
= 1 −x+
x^2
2−
x^3
6
+···. The ratio limn→∞∣∣
∣
∣(−x)n+^1
(n+1)!n!
(−x)n∣∣
∣
∣=nlim→∞∣∣
∣∣ −x
n+ 1∣∣
∣∣=0, so the series converges on the interval (−∞,∞).14.9 Practice Problems
For problems 1–5, determine whether each
series converges or diverges.1.∑∞
n= 05 −n2.
∑∞
n= 11
n· 2 n3.
∑∞
n= 0n
en4.
∑∞
n= 1n+ 1
n(n+2)5.
∑∞
n= 1n
(n+1)n